Что такое электрическая дуга и как она возникает

Явление электрической дуги

Электрическая дуга представляет собой электрический разряд в среде (воздух, вакуум, элегаз, трансформаторное масло) с большим током, низким напряжением, высокой температурой. Это явление как электрическое, так и тепловое.

Может возникать между двумя контактами при их размыкании.

Обратимся к ВАХ-диаграмме:

переход от тлеющего заряда к дуговому

На данном графике у нас зависимость тока от напряжения, немного не в масштабе, но так нагляднее. Значит, есть три области:

  • в первой области у нас высокое падение напряжения у катода и малые токи — это область тлеющего разряда
  • во второй области у нас падение напряжения резко снижается, а ток продолжает увеличиваться — это переходная область между тлеющим и дуговым разрядом
  • третья область характеризует дуговой разряд — малое падение напряжения и высокая плотность тока и следовательно высокая температура.

Механизм возникновения дуги может быть следующий: контакты размыкаются и между ними возникает разряд. В процессе размыкания воздух между контактами ионизируется, обретая свойства проводника, затем возникает дуга. Зажигание дуги — это процессы ионизации воздушного промежутка, гашение дуги — явления деионизации воздушного промежутка.

Явления ионизации и деионизации

В начале горения дуги преобладают процессы ионизации, когда дуга устойчива, то процессы ионизации и деионизации происходят одинаково часто, как-только процессы деионизации начинают преобладать над процессами ионизации — дуга гаснет.

  • термоэлектронная эмиссия — электроны отрываются от раскаленной поверхности катодного пятна;
  • автоэлектронная эмиссия — электроны вырываются с поверхности из-за высокой напряженности электрического поля.
  • ионизация толчком — электрон вылетает с достаточной скоростью и в пути сталкивается с нейтральной частицей, в результате образуется электрон и ион.
  • термическая ионизация — основной вид ионизации, поддерживает дугу после её зажигания. Температура дуги может достигать тысяч кельвинов, а в такой среде увеличивается число частиц и их скорости, что способствует активным процессам ионизации.
  • рекомбинация — образование нейтральных частиц из противоположно заряженных при взаимодействии
  • диффузия — положительно заряженные частицы отправляются “за борт”, из-за действия электрического поля дуги от середины к границе

Бывают ситуации, когда при размыкании контактов дуга не загорается, тогда говорят о безыскровом разрыве. Такое возможно при малых значениях тока и напряжения, или при отключении в момент, когда значение тока проходит через ноль.

Свойства дуги постоянного тока

Дуга может возникать как при постоянном токе-напряжении, так и при переменном. Начнем рассмотрение с постоянки:

строение дуги постоянного тока

Анодная и катодная области — размер=10 -4 см; суммарное падение напряжения=15-30В; напряженность=10 5 -10 6 В/см; в катодной области происходит процесс ударной ионизации из-за высокой напряженности, образовавшиеся в результате ионизации электроны и ионы образуют плазму дуги, которая обладает высокой проводимостью, данная область отвечает за разжигание дуги.

Ствол дуги — падение напряжения пропорционально длине дуги; плотность тока порядка 10кА на см 2 , за счет чего и температура порядка 6000К и выше. В данной области дуги происходят процессы термоионизации, данная область отвечает за поддержание горения.

ВАХ дугового разряда постоянного тока

ВАХ дуги постоянного тока DC

Эта кривая соответствует кривой 3 на самом верхнем рисунке. Тут есть:

  • Uз — напряжение зажигания
  • Uг — напряжение гашения

Если ток уменьшить от Io до 0 мгновенно, то получится прямая, которая лежит снизу. Эти кривые характеризуют дуговой промежуток как проводник, показывают какое напряжение нужно приложить, чтобы создать в промежутке дугу.

Чтобы погасить дугу постоянного тока, необходимо, чтобы процессы деионизации преобладали над процессами ионизации.

  • можно определить из ВАХ дуги
  • активное, независимо от рода тока
  • переменная величина
  • падает с ростом тока

Если разорвать цепь амперметра под нагрузкой, то тоже можно увидеть дугу.

Свойства дуги переменного тока

Особенностью дуги переменного тока является её поведение во времени. Если посмотреть на график ниже, то видно, что дуга каждый полупериод проходит через ноль.

вольтамперная и временная характеристики дуги переменного тока

Видно, что ток отстает от напряжения примерно на 90 градусов. Вначале появляется ток и резко повышается напряжение до величины зажигания (Uз). Далее ток продолжает расти, а падение напряжения снижается. В точке максимального амплитудного значения тока, значение напряжения дуги минимальное. Далее ток стремится к нулю, а падение напряжения опять возрастает до значения гашения (Uг), которое соответствует моменту, когда ток переходит через ноль. Далее всё повторяется опять. Слева от временной характеристики приведена вольт-амперная характеристика.

Особенностью переменной дуги, кроме её зажигания и гашения на протяжении полупериода, является то, как ток пересекает ноль. Это происходит не по форме синусоиды, а более резко. Образуется бестоковая пауза, во время которой происходят знакомые нам процессы деионизации. То есть возрастает сопротивление дугового промежутка. И чем больше возрастет сопротивление, тем сложнее будет дуге обратно зажечься.

Если дуге дать гореть достаточно долго, то уничтожению подлежат не только контакты, но и само электрооборудование. Условия для гашения дуги заложены на стадии проектирования, постоянно внедряются новые методы борьбы с этим вредным явлением в коммутационных аппаратах.

Само по себе явление дуги не является полезным для электрооборудования, так как ведет к ухудшению эксплуатационных свойств контактов: выгорание, коррозия, механическое повреждение.

Но не всё так печально, потому что светлые умы нашли полезное применение дуговому разряду — использование в дуговой сварке, металлургии, осветительной технике, ртутных выпрямителях.

Электрическая дуга

Электрическая дуга — явление электрического разряда в газе (газовой среде). Электрический ток, протекающий по ионизированному каналу в газе (воздухе).

Образование электрической дуги в воздухе

При увеличении напряжения между двумя электродами до уровня электрического пробоя в воздухе между ними возникает электрическая дуга. Напряжение электрического пробоя зависит от расстояния между электродами, давления окружающего газа, температуры окружающей среды, влажности и других факторов, потенциально сказывающихся на начало развития процесса.. Потенциал ионизации первого электрона атомов металлов составляет приблизительно 4,5 — 5 В, а напряжение дугообразования — в два раза больше (9 — 10 В). Требуется затратить энергию на выход электрона из атома металла одного электрода и на ионизацию атома второго электрода. Процесс приводит к образованию плазмы между электродами и горению дуги (для сравнения: минимальное напряжение для образования искрового разряда немногим превышает потенциал выхода электрона — до 6 В).

Для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.

Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения в воздушном промежутке образуется достаточное количество плазмы для значительного падения напряжения пробоя или сопротивления воздушного промежутка. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Возникающая дуга является, по сути, проводником и замыкает электрическую цепь между электродами. В результате средний ток увеличивается ещё больше, нагревая дугу до 4700-49700 С. При этом считается, что поджиг дуги завершён. После поджига устойчивое горение дуги обеспечивается термоэлектронной эмиссией с катода, разогреваемого током и ионной бомбардировкой.

Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.
После поджига дуга может оставаться устойчивой при разведении электрических контактов до некоторого расстояния.

При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с ней осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных, воздушных, элегазовых и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.

Строение электрической дуги

Электрическая дуга состоит из катодной и анодной областей, столба дуги, переходных областей. Толщина анодной области составляет 0,001 мм, катодной области — около 0,0001 мм.

Температура в анодной области при сварке плавящимся электродом составляет около 2500 … 4000°С, температура в столбе дуги — от 7 000 до 18 000°С, в области катода — 9000 — 12000°С.

Читайте также  Почему электроприборы на кухне бьются током?

Столб дуги электрически нейтрален. В любом его сечении находятся одинаковое количество заряженных частиц противоположных знаков. Падение напряжения в столбе дуги пропорционально его длине.

Влияние электрической дуги на электрооборудование

В ряде устройств явление электрической дуги является вредным. Это в первую очередь контактные коммутационные устройства, используемые в электроснабжении и электроприводе: высоковольтные выключатели, автоматические выключатели, контакторы, секционные изоляторы на контактной сети электрифицированных железных дорог и городского электротранспорта. При отключении нагрузок вышеуказанными аппаратами между размыкающимися контактами возникает дуга.

Механизм возникновения дуги

  • Уменьшение контактного давления — количество контактных точек уменьшается, растёт сопротивление в контактном узле;
  • Начало расхождения контактов — образование «мостиков» из расплавленного металла контактов (в местах последних контактных точек);
  • Разрыв и испарение «мостиков» из расплавленного металла;
  • Образование электрической дуги в парах металла (что способствует большей ионизации контактного промежутка и трудности при гашении дуги);
  • Устойчивое горение дуги с быстрым выгоранием контактов.

Для минимального повреждения контактов необходимо погасить дугу в минимальное время, прилагая все усилия по недопущению нахождения дуги на одном месте (при движении дуги теплота, выделяющаяся в ней будет равномерно распределяться по телу контакта).

Что такое электрическая дуга, как она возникает и где применяется?

Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.

Грозовой разряд

Рис. 1. Грозовой разряд

На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.

Что такое электрическая дуга?

Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.

Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.

Электрическая дуга

Рис. 2. Электрическая дуга

Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».

Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.

Физика электрической дуги

Рис. 3. Физика электрической дуги

Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.

Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.

При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.

При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.

На участке, который называют дуговым промежутком, образуется ствол, называемый столбом дуги и состоящий из горячей проводимой плазмы. По этому стволу протекает ток, поддерживающий разогревание плазмы. Так происходит процесс зажигания дугового разряда.

Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.

Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.

Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга — это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.

Электрическая дуга отличается от обычного разряда большей длительностью горения.

Строение

Электрическая дуга состоит из трёх основных зон:

  • катодной;
  • анодной;
  • плазменного столба.

В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.

На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.

Строение сварочной дуги

Рис. 4. Строение сварочной дуги

Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.

Свойства

Высокая плотность тока в стволе электрической дуги определяет её главные свойства:

  1. Чрезвычайно высокую температуру плазменного ствола и околоэлектродных зон.
  2. Длительное горение, при поддержании условий образования ионов.

Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.

Полезное применение

Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.

У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.

Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)

Дуговая сварка

Рис. 5. Дуговая сварка

Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.

Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.

Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.

Дуговой разряд на ЛЭП

Рис. 6. Дуговой разряд на ЛЭП

Причины возникновения

Исходя из определения, можем назвать условия возникновения электрической дуги:

  • наличие разнополярных электродов с большими токами;
  • создание искрового разряда;
  • поддержание напряжения на электродах;
  • обеспечение условий для сохранения температуры ствола.

Искровой разряд возникает в двух случаях: при кратковременном соприкосновении электродов или при приближении к параметрам пробоя. Мощный электрический пробой всегда зажигает ствол.

При сохранении оптимальной длины дуги температура плазмы поддерживается самостоятельно. Однако, с увеличением промежутка между электродами, происходит интенсивный теплообмен ствола с окружающим воздухом. В конце концов, в стволе, вследствие падения температуры, образование ионов лавинообразно прекратится, в результате чего произойдёт гашение пламени.

Пробои часто случаются на высоковольтных ЛЭП. Они могут привести к разрушению изоляторов и к другим негативным последствиям. Длинная электрическая дуга довольно быстро гаснет, но даже за короткое время горения её разрушительная сила огромна.

Читайте также  Кто должен оплачивать замену счетчика электроэнергии?

Дуга имеет склонность к образованию при размыкании контактов. При этом контакты выключателя быстро выгорают, электрическая цепь остаётся замкнутой до момента исчезновения ствола. Это опасно не только для сетей, но и для человека.

Способы гашения

Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.

С целью недопущения образования дуг на высоковольтных проводах ЛЭП, их разносят на большое расстояние, что исключает вероятность пробоя. Если же пробой между проводами всё-таки случится, то длинный ствол быстро охладится и произойдёт гашение.

Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.

Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.

Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.

Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.

Воздействие на человека и электрооборудование

Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.

Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.

Электрическая дуга: терминология и причины появления, чем грозит и какие последствия несет

явление дуга

Электрическая дуга это серьезная проблема, которая возникает при перегрузке кабелей между подстанциями или трансформаторами. Однако, несмотря на свое негативное влияние, ее можно использовать в технологических целях.

На данный момент узкопрофильные специалисты разработали эффективные методы устранения явления, и в тоже время способы его применения.

В этой статье мы подробнее разберем эту тему.

Появление «микро молнии» на наглядном примере и схема строения

Для наглядности и лучшего понимания мы приведем простой пример. Представьте, что мы находимся в условиях лаборатории и проводим физическое исследование.

Для этого мы располагаем металлические шурупы наконечниками напротив друг друга на небольшой дистанции.

С помощью жилы мы подключим шурупы к источнику электропитания. По ходу увеличения силы тока, мы сможем проследить за возникновением небольших искр между шурупами, которое напоминание «микромолнию».

дуга искры электрический

Благодаря такому воображаемому эксперименту, можно представить себе появление электрической дуги. Научным языком «микромолния» называется плазмой.

Практически именно эта искра и является электрической дугой. Простыми словами это поток электричества через воздушную среду между заряженными электродами.

Рекомендуем ознакомиться с детальными изображениями приведенными выше. На них вы сможете увидеть строение.

Причины и условия появления

Как известно, если любое тело, проводящее электричество, например, гвоздь, шуруп и т.д., расположить в активном электрическом поле, то на его поверхности будут накапливаться заряженные частицы.

Более того, чем больше изгиб или искривление поверхности проводника, тем меньше их будет накапливаться. Если упростить терминологию – электрический заряд будет накапливаться на остром конце шурупа или гвоздя.

Пространство между, вышеприведенными в эксперименте, шурупами выступает в роли проводящего воздуха или газа.

Из-за влияния электрического поля происходит ионное заряжение, в результате которого появляются искры или «микромолния» или электрическая дуга.

искры

Все эти термины подразумевают одно и тоже, потому рекомендуем использовать то, что для вас легче всего визуализировать и понять.

Напряжение тока во время которого появляется электрическая дуга, зависит от нескольких факторов внешней среды: давление, температура, влажность воздуха и т.д.

На заметку. Некоторые специалисты утверждают, что явление именно такой формы, поскольку в действительности траектория заряженных частиц искажается от воздействия внешней температуры, напоминая полукруг.

Чтобы зажечь электрическую дугу необходимо разорвать напряжение электроцепи. Для наглядности рекомендуем ознакомиться с иллюстрацией ниже.

Подробнее о зажигании и условиях горения.

  1. Между проводниками должно быть пространство.
  2. Чтобы разрушит напряжение электроцепи необходим ток с высоким показателем, в зависимости от дистанции между проводниками.
  3. Чтобы поддержать горение необходимо обеспечить постоянное питание 60 Вольт и ток 10 Ам.

Негативное влияние

электрическая дуга

Электрическая дуга нещадно влияет на все электрооборудование, в том числе на целые подстанции и коммутационные сети.

Для наглядности, представьте, что резко выдергиваете вилку электроустройства во время его работы из розетки. Не трудно догадаться, что произойдет, как минимум – искра, а хуже даже вспышка электросети.

Точно такой же процесс происходит и с коммутационным оборудованием, только в сотни раз масштабнее и опаснее.

Чаще всего электрические дуги образуются на:

  1. Автоматические коммутационные переключатели.
  2. Пусковые приборы магнитного действия.
  3. Соединители кабелей.

В некоторых устройствах рассчитанных на сети 220 В обязательно применяют камеры дугового гашения для защиты сети.

Рекомендуем ознакомиться с иллюстрацией выше.

Простыми словами камеры дугового гашения напоминает устройство с небольшим лабиринтом из разных перегородок из диэлектрического металла.

Принцип действия камеры заключается в том, что плазма попадает в область камеры и разрывается на маленькие фрагменты, в результате чего, она теряет температуру и дуга исчезает.

Кроме того, в высоковольтных сетях, трансформаторах и подстанциях активно используются переключатели вакуумного, газового и масляного действия.

В масляном варианте процесс гашения происходит в результате коммутации проводников в масле, в котором дуга распадается на газ и водород.

Также вокруг «микромолнии» образуется газовая оболочка, которая охлаждает искру и в итоге ее разрушает.

В переключателях с вакуумным способом действия, в принципе нивелируется возникновение электрической духи из-за отсутствия газовой среды.

Не менее популярны стали полугазовые переключатели, которые используют в современных высоковольтных сетях. Также можно погасить дугу, применив нулевое значение тока.

Как применить «микромолнию» с пользой

Ниже мы опишем, где можно использовать ее с пользой и приведем понятные схемы и иллюстрации.

  1. Устройства для освещения, например,ксенон-лампы для фар автомобиля. Примечательно, что если добавить соль на поверхность проводника, будет изменяться цвет.
  2. Сварка методом электрической стандартной дуги. Во время соприкосновения электрода с поверхностью проводника, проходит напряжение тока. В момент отрыва устройства от поверхности возникает явление. Благодаря ее возникновению можно без труда сплавить две отдельные поверхности, или наоборот их разрезать на необходимые части.
  3. Плавление методом электрической стандартной дуги. Поскольку можно контролировать и даже изменять силу горения, путем настройки внешних характеристик условий, можно установить максимальную температуру для плавления необходимых металлических поверхностей.

Уверены, что данное объяснение в это статья углубит ваши профессиональные познания.

Электрическая дуга

Электрическая сварочная дуга – это длительный электрический разряд в плазме, которая представляет собой смесь ионизированных газов и паров компонентов защитной атмосферы, присадочного и основного металла.

Дуга получила свое название от характерной формы, которую она принимает при горении между двумя горизонтально расположенными электродами; нагретые газы стремятся подняться вверх и этот электрический разряд изгибается, принимая форму арки или дуги.

Электрическая дуга

С практической точки зрения дугу можно рассматривать как газовый проводник, который преобразует электрическую энергию в тепловую. Она обеспечивает высокую интенсивность нагрева и легко управляема посредством электрических параметров.

Общей характеристикой газов является то, что они в нормальных условиях не являются проводниками электрического тока. Однако, при благоприятных условиях (высокая температура и наличие внешнего электрического поля высокой напряженности) газы могут ионизироваться, т.е. их атомы или молекулы могут освобождать или, для электроотрицательных элементов наоборот, захватывать электроны, превращаясь соответственно в положительные или отрицательные ионы. Благодаря этим изменениям газы переходят в четвертое состояние вещества называемого плазмой, которая является электропроводной.

Читайте также  Что такое диэлектрические потери?

Возбуждение сварочной дуги происходит в несколько этапов. Например, при сварке МИГ/МАГ, при соприкосновении конца электрода и свариваемой детали возникает контакт между микро выступами их поверхностей. Высокая плотность тока способствует быстрому расплавлению этих выступов и образованию прослойки жидкого металла, которая постоянно увеличивается в сторону электрода, и в конце концов разрывается.

Возбуждение сварочной дуги

В момент разрыва перемычки происходит быстрое испарение металла, и разрядный промежуток заполняется ионами и электронами возникающими при этом. Благодаря тому, что к электроду и изделию приложено напряжение электроны и ионы начинают двигаться: электроны и отрицательно заряженные ионы — к аноду, а положительно заряженные ионы – к катоду, и таким образом возбуждается сварочная дуга. После возбуждения дуги концентрация свободных электронов и положительных ионов в дуговом промежутке продолжает увеличиваться, так как электроны на своем пути сталкиваются с атомами и молекулами и «выбивают» из них еще больше электронов (при этом атомы, потерявшие один и более электронов, становятся положительно заряженными ионами). Происходит интенсивная ионизация газа дугового промежутка и дуга приобретает характер устойчивого дугового разряда.

Через несколько долей секунды после возбуждения дуги на основном металле начинает формироваться сварочная ванна, а на торце электрода – капля металла. И спустя еще примерно 50 – 100 миллисекунд устанавливается устойчивый перенос металла с торца электродной проволоки в сварочную ванну. Он может осуществляться либо каплями, свободно перелетающими дуговой промежуток, либо каплями, которые сначала образуют короткое замыкание, а затем перетекают в сварочную ванну.

Строение и свойства сварочной дуги

Электрические свойства дуги определяются процессами, протекающими в ее трех характерных зонах – столбе, а также в приэлектродных областях дуги (катодной и анодной), которые находятся между столбом дуги с одной стороны и электродом и изделием с другой.

Для поддержания плазмы дуги при сварке плавящимся электродом достаточно обеспечить ток от 10 до 1000 ампер и приложить между электродом и изделием электрическое напряжение порядка 15 – 40 вольт. При этом падение напряжения на собственно столбе дуги не превысит нескольких вольт. Остальное напряжение падает на катодной и анодной областях дуги. Длина столба дуги в среднем достигает 10 мм, что соответствует примерно 99% длины дуги. Таким образом, напряженность электрического поля в столбе дуги лежит в пределах от0,1 до 1,0 В/мм. Катодная и анодная области, напротив, характеризуются очень короткой протяженностью (около 0.0001 мм для катодной области, что соответствует длине свободного пробега иона, и 0.001 мм для анодной, что соответствует длине свободного пробега электрона). Соответственно, эти области имеют очень высокую напряженность электрического поля (до 104 В/мм для катодной области и до 103 В/мм для анодной).

Экспериментально установлено, что для случая сварки плавящимся электродом падение напряжения в катодной области превышает падение напряжения в анодной области: 12 – 20 В и 2 – 8 В соответственно. Учитывая то, что выделение тепла на объектах электрической цепи зависит от тока и напряжения, то становится понятным, что при сварке плавящимся электродом больше тепла выделяется, в той области, на которой падает больше напряжения, т.е. в катодной. Поэтому при сварке плавящимся электродом используется, в основном, обратная полярность подключения тока сварки, когда катодом служит изделие для обеспечения глубокого проплавления основного металла (при этом положительный полюс источника питания подключают к электроду). Прямую полярность используют иногда при выполнении наплавок (когда проплавление основного металла, напротив, желательно чтобы было минимальным).

В условиях сварки ТИГ (сварка неплавящимся электродом) катодное падение напряжения, напротив, значительно ниже анодного падения напряжения и, соответственно, в этих условиях больше тепла выделяется уже на аноде. Поэтому при сварке неплавящимся электродом для обеспечения глубокого проплавления основного металла изделие подключают к положительной клемме источника питания (и оно становится анодом), а электрод подключают к отрицательной клемме (таким образом, обеспечивая еще и защиту электрода от перегрева).

При этом, независимо от типа электрода (плавящийся или неплавящийся) тепло выделяется, в основном, в активных областях дуги (катодной и анодной), а не в столбе дуги. Это свойство дуги используется для того, чтобы плавить только те участки основного металла, на которые направляется дуга.

Те части электродов, через которые проходит ток дуги, называют активными пятнами (на положительном электроде – анодным, а на отрицательном – катодным пятном). Катодное пятно является источником свободных электронов, которые способствуют ионизации дугового промежутка. В то же время к катоду устремляются потоки положительных ионов, которые его бомбардируют и передают ему свою кинетическую энергию. Температура на поверхности катода в области активного пятна при сварке плавящимся электродом достигает 2500 … 3000 °С.

Строение дуги

Строение дуги
Lк — катодная область; Lа — анодная область (Lа = Lк = 10 -5 -10 -3 см); Lст — столб дуги; Lд — длина дуги; Lд = Lк + Lа + Lст

К анодному пятну устремляются потоки электронов и отрицательно заряженных ионов, которые передают ему свою кинетическую энергию. Температура на поверхности анода в области активного пятна при сварке плавящимся электродом достигает 2500 … 4000°С. Температура столба дуги при сварке плавящимся электродом составляет от 7 000 до 18 000°С (для сравнения: температура плавления стали равна примерно 1500°С).

Влияние на дугу магнитных полей

При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:

— столб сварочной дуги резко откланяется от нормального положения;
— дуга горит неустойчиво, часто обрывается;
— изменяется звук горения дуги — появляются хлопки.

Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.

Сварочная дуга без отклонения

Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.

В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.

Отклонение сварочной дуги

Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.

Влияние феромагнитных масс на дугу

Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.

Уменьшить влияние магнитного дутья на сварочный процесс можно:

— выполнением сварки короткой дугой;
— наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья;
— подведением токоподвода ближе к дуге.

Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: