Что такое гармоники в электрических сетях

Гармоники в электрических сетях: причины, источники, защита

Работа большинства электрических приборов обеспечивается качеством поступающей на них электрической энергии. Но даже в условиях безаварийной работы в системе возникают процессы, обуславливающие возникновение гармоник в электрических сетях. При этом никаких отключений или нарушений может и не происходить, большинство гармоник спокойно вырабатываются во всех цепях, независимо от рода нагрузки. Однако с возрастанием их величины, возможен ряд негативных последствий, как для потребителей, так и для энергосистемы в целом.

Что такое гармоники?

Если напряжение и ток, вырабатываемые источником, максимально приближается к форме идеальной синусоиды, то из-за нелинейных нагрузок, подключенных к электрической цепи, форма начального сигнала получает искажение. Гармоники представляют собой производные по частоте от основной синусоиды в 50 Гц и являются кратными ее величине.

По кратности гармоники подразделяются на четные и нечетные. То есть гармоника №1 – это 50 Гц, 2 – 100 Гц, 3 -150 Гц и т.д. Каждая из них является одной из составляющих результирующей формы напряжения и тока. А значит, что напряжение и ток в сети можно свободно разложить на гармонические составляющие.

Гармоники и их сумма

Гармоники и их сложение

Посмотрите на рисунок выше, здесь вы видите детальный пример разложения синусоиды на гармоники и их влияние на форму синусоидального напряжения. В первой позиции изображены результирующая функция с нелинейными искажениями, которые обусловлены показанными ниже нечетными гармониками и подобными им с большей частотой. Величина этих гармоник будет определять величину скачков и провалов на результирующем сигнале. Поэтому, чем больше проявляется та или иная гармоника, тем больше кривая будет отличаться от синусоиды.

По сути, гармоника представляет собой паразитную ЭДС, которая никак не поглощается существующими потребителями или поглощается только частично. Из-за чего возникает негативное влияние на все силовые сети. Естественное поглощение осуществляют лишь активные сопротивления, но в размере пропорциональном потребляемой ими мощности. В то же время, сами потребители можно рассматривать как источники, активно генерирующие искаженный сигнал.

Причины и источники гармоник в электрических сетях

Главной причиной гармонического искажения является протекание каких-либо переходных процессов в электрических сетях. Независимо от характера созданной нагрузки, переходной процесс можно наблюдать в работе той же лампы накаливания, которая, казалось бы, характеризуется исключительно активными потерями. Так, разница между сопротивлением нити лампы в холодном и нагретом состоянии создает переходной процесс, который привносит скачок. Но из-за низкого уровня искажения и относительно кратковременного протекания, влияние на всю систему получается ничтожным.

Поэтому можно смело сказать, что и активные, и реактивные сопротивления в сетях электропитания могут способствовать генерации гармоник. Тем не менее, существует ряд устройств, обуславливающих весомую величину искажения, которая способна нанести существенный ущерб приборам. На практике к источникам искажения относят такие виды оборудования:

  • Силовое электрооборудование – приводы постоянного и переменного тока, высокочастотные плавильные печи, полупроводниковые преобразователи, источники бесперебойного питания (ИБП), преобразователи частоты.
  • Устройства, работающие по принципу формирования электрической дуги – электросварочные установки, дуговые печи, лампы освещения (ДРЛ, люминесцентные и другие).
  • Насыщаемые приборы – двигатели, трансформаторы, обладающие магнитопроводом, который может достигнуть насыщения петли гистерезиса. Без такового насыщения их вклад в формирование гармонической составляющей будет незначительным.

Среди бытовых приборов значительный вклад в генерацию несинусоидальных составляющих вносят те же микроволновые печи. Обратите внимание, что из-за особенностей режима работы одна такая печь способна кратковременно снижать уровень напряжения в сети на 2 – 4%, и, что куда более существенно, повышать коэффициент искажения его кривой на 6 – 18%.

Категории и принцип разделения

В соответствии с особенностями протекания процесса в сетях и источниках электропитания, все гармонические составляющие условно разделяются по таким параметрам:

  • по пути распространения выделяют пространственные либо кондуктивные;
  • по прогнозируемости времени возникновения выделяют случайные либо систематические;
  • по продолжительности могут быть кратковременными (импульсными) либо длительными.

Так, импульсные возмущения обуславливаются единичными коммутациями в питающей сети, короткими замыканиями, перенапряжениями, которые после их отключения потребовали бы ручного включения. А в случае срабатывания АПВ, в основной гармонике появляются уже прогнозируемые изменения, наблюдающиеся в нескольких периодах.

Длительные изменения обуславливаются какой-либо циклической нагрузкой, подаваемой мощными потребителями. Для возникновения таких высших гармоник, как правило, необходима ограниченная мощность сети и относительно большие нелинейные нагрузки, обуславливающие генерацию реактивной мощности.

Возможные последствия

В случае постоянно присутствующего фактора, генерирующего гармоники, их воздействие может обуславливать различные негативные последствия в электрической сети. Из которых особо следует выделить:

  • Сопутствующий нагрев, выводящий из строя изоляцию двигателей, обмоток трансформаторов, снижающий сопротивление конденсаторов и.т. При нагревании фазного провода или других токопроводящих элементов в диэлектриках возникают необратимые процессы, снижающие их изоляционные свойства.
  • Ложное срабатывание в распределительных сетях – приводит к отключению автоматов, высоковольтных выключателей и прочих устройств, реагирующих на изменение режима, обусловленное гармониками.
  • Вызывает асимметрию в промышленных сетях с трехфазными источниками при возникновении гармоники на одной фазе. От чего может нарушаться нормальная работа трехфазных выпрямителей, силовых трансформаторов, трехфазных ИБП и прочего оборудования.
  • Возникновение шума в сетях связи, влияние на смежные слаботочные и силовые кабели за счет наведенной ЭДС. На величину гармоники ЭДС влияет как расстояние между проводниками, так и продолжительность их приближения.
  • Приводит к преждевременному электрическому старению оборудования. За счет разрушения чувствительных элементов, высокоточные приборы утрачивают класс точности и подвергаются преждевременному изнашиванию.
  • Обуславливает дополнительные финансовые расходы, обуславливаемые потерями от индуктивных нагрузок, остановкой производства, внеочередными ремонтами и преждевременной поломкой.
  • Потребность увеличения сечения нулевых проводов в связи с суммированием гармоник кратных 3-ей в трехфазных сетях.

Рассмотрите на примере негативное влияние на работу трехфазных цепей. В идеальном варианте, когда каждая из фаз запитывает линейную нагрузку, система находится в равновесии. Это означает, что в сети отсутствуют гармоники, а в нулевом проводе ток, так как все токи при симметричной нагрузке смещены на 120º и компенсируют друг друга в нейтрали.

Если в схеме электроснабжения на одной из фаз возникает потребитель или фактор, искривляющий переменный ток, то возникает автоматическое изменение остальных фазных токов, их смещение относительно начальной величины и угла. Из-за нарушения симметрии и отсутствия компенсации в нулевом проводе начинает протекать ток.

Развитие тока в нейтрали

Рис. 2. Развитие тока в нейтрали

Как показано на рисунке 2, нечетные гармоники кратные 3-ей обладают тем же направлением, что и основной ток. Но в связи с нарушением компенсирующего эффекта симметричной системы, они накладываются друг на друга и способны выдать в нейтраль ток, значительно превышающий номинальный для этой цепи. Из-за чего возникает перегрев, который может вызвать аварийные ситуации.

Все вышеперечисленные последствия ведут к снижению качества электрической энергии, чрезмерным перегрузкам и последующему падению фазного напряжения. В частных случаях, последствия протекания гармоник могут создавать угрозу для персонала и потребителей. С целью предотвращения таких последствий на электростанциях, трехфазных кабелях и прочем оборудовании устанавливается защита от гармоник.

Читайте также  Как подключить двухтарифный счетчик электроэнергии

Защита от гармоник

Для защиты применяются устройства с активными и пассивными элементами, действие которых направлено на поглощение или компенсацию гармоник в сети. Наиболее простым вариантом являются LC-фильтры, состоящие из линейного дросселя и конденсатора.

Рис. 3. Схема LC-фильтра

Посмотрите на рисунок 3, здесь изображена принципиальная схема фильтра. Его работа основана на индуктивном сопротивлении катушки L, которое не позволяет току мгновенно набирать или терять величину. И на емкости конденсатора C, которая обеспечивает постепенное нарастание или падение напряжения. Это означает, что гармоники не могут резко изменить форму синусоиды и обеспечивают ее плавное нарастание и спад на нагрузке RН.

При последовательном включении катушки и конденсатора с конкретной подборкой параметров, их комплексное сопротивление будет равно нулю для какой-то гармоники. Недостатком такого пассивного фильтра является необходимость формирования отдельной цепи для каждой составляющей в сети. При этом необходимо учитывать их взаимодействие. Так, к примеру, при гашении пятой гармоники происходит усиление седьмой, поэтому на практике устанавливаются несколько фильтров подряд, как показано на рисунке 4.

Шунтирующий фильтр

Рис. 4. Шунтирующий фильтр

За счет того, что каждая цепочка L1-C1, L2-C2, L3-C3 шунтирует соответствующую составляющую, фильтр получил название шунтирующего. Помимо этого, в качестве входного фильтра могут применяться устройства с активным подавлением гармоник.

Принцип действия активного кондиционера гармоник

Рис. 5 Принцип действия активного кондиционера гармоник

Посмотрите на рисунок 5, здесь изображен активный фильтр. Источник питания генерирует ток ips, на который оказывает влияние нелинейная нагрузка, из-за чего в сети получается несинусоидальная кривая in. Активный кондиционер гармоник (АКГ) измеряет величину всех нелинейных токов iahc и выдает в сеть такие же токи, но с противоположным углом. Что позволяет нейтрализовать гармоники и выдать потребителю ток первой гармоники максимально приближенный к синусоиде.

Установка любого из существующих видов защиты требует детального анализа гармонических составляющих, нагрузок, коэффициентов амплитуды и коэффициентов мощности для конкретной сети. Чтобы подобрать наиболее эффективный способ удаления и выполнить соответствующие настройки.

Гармонические составляющие сети. Что это такое и как с ними быть

Как нам хорошо известно, сетевое напряжение имеет синусоидальную форму и частоту равную 50 Гц. Это в идеале, но на практике так бывает далеко не всегда. И дело здесь в гармонических составляющих сети — высших гармониках, представляющих из себя частотные сигналы, отличающиеся от основной частоты, и вносящих искажения в синусоидальную форму питающего напряжения, а это в свою очередь становится причиной ухудшения качества электроэнергии, нарушению нормальной работы электропотребителей и т.д.

Откуда же берутся эти гармонические составляющие?

Дело в том, что в цепях с линейной нагрузкой, к которым можно отнести сопротивление, индуктивность, емкость, протекающий через нагрузку ток пропорционален прикладываемому напряжению и следовательно синусоидальной форме сигнала напряжения соответствует токовая синусоида, поэтому разность фаз между ними равна нулю. А вот в случае, если наблюдается нелинейная зависимость протекающего тока от приложенного напряжения, синусоидальная форма сигнала искажается.

Связано это в первую очередь с ростом количества электрооборудования, имеющего нелинейные характеристики, вызванные наличием в схемотехнике полупроводниковых элементов. Наиболее «проблемными» в этом плане являются тиристорные регуляторы, преобразователи частоты, источники бесперебойного питания, электронные балласты, сварочные аппараты, электродуговые печи и другое оборудование с импульсными источниками питания.

Это приводит к возникновению импульсных токов, содержащих большое количество гармонических составляющих, так называемых высших гармоник, отличающихся от основной гармоники, которые затем попадают в электрические сети и вносят искажения. Гармоники образуются на частотах, кратных основной. Так, первая (основная) гармоника имеет частоту 50 Гц, частота гармоники 3-го порядка будет равна 150 Гц, частота гармоники 5-го порядка – 250 Гц и т.д. Получается, что реальное напряжение в сети представляет собой сумму основного синусоидального сигнала и его гармонических составляющих.

Форма сигнала гармоник

Надо учитывать, что полностью избавиться от влияния гармонических составляющих невозможно, и пока уровень гармоник не превышает допустимых норм, в принципе можно не беспокоиться о каких-то серьезным последствиях. Согласно ГОСТ 13109-97, нормально допустимое значение коэффициентов гармонических составляющих напряжения для сетей 0,38 кВ составляет 8 %, а предельно допустимое — 12 %. Также в этом ГОСТ приведены допустимые значения для каждой n-ой гармонической составляющей, например для 3-ей гармоники это 5%, для 5-ой гармоники – 6,0 %, для 7-ой гармоники – 5 % и т.д. Считается, что наибольшие искажения в синусоидальный сигнал вносят гармоники 3, 5, 7 порядка.

Немного расчётов

Параметр, указывающий на уровень влияния нелинейных искажений, или по другому степень отличия формы сигнала от синусоидальной, называется коэффициентом нелинейных искажений Ku (THD — Total Harmonic Distorsions).

THD - Коэффициент нелинейных искажений

U (1) – действующее значение напряжения 1-ой гармоники

U (2), U (3) … U (40) – действующие значения напряжения высших гармоник.

Таким образом можно определить общую долю суммарного напряжения высших гармоник по отношению к напряжению основной частоты.

Еще одним параметром является коэффициент n-ой гармонической составляющей напряжения

n — номер гармонической составляющей, кратной основной частоте

По этой формуле вычисляется вклад конкретной гармоники в общие искажения.

Основные характеристики гармоник

Все гармоники можно разделить по трем основным характеристикам — порядковому номеру, частоте и типу последовательности.

  • Порядковый номер гармоники — это число,показывающее во сколько раз частота гармонической составляющей превышает частоту основной гармоники.
  • Частота гармоники определяется путем умножения порядкового номера гармоники на значение основной частоты — 50 Гц.
  • По типу последовательности разделяют гармоники прямой, обратной и нулевой последовательности. Гармоники 4, 7, 10, 13 и т. д. порядка образуют симметричную систему напряжений прямой последовательности, то есть совпадающей с последовательностью фаз первой гармоники. Гармоники 2, 5, 8, 11, 14 и т.д. образуют системы напряжений обратной последовательности по отношению к основной частоте. Гармоники с порядковым номером, кратным третьей гармоники (3, 6, 9, 12 и.д.) имеют нулевой порядок следования фаз, т.е. совпадают, и, следовательно, образуют симметричные системы нулевой последовательности.

Последствия возникновения

Какие же проблемы приносят гармонические составляющие в случае отклонения от предельно допустимых показателей?

На самом деле негативных воздействий немало, это увеличение потерь в сетях, перегрев трансформаторов,перегрузки на нейтральных проводах, гармонические шумы, искажение формы синусоидальной кривой, перегрузка и следовательно уменьшение срока службы конденсаторов коррекции коэффициента мощности, поверхностный эффект. И это еще перечислены не все негативные последствия данного эффекта. Все эти факторы приводят в конечном итоге к экономическим, энергетическим потерям и сокращению срока службы оборудования.

Поэтому в случае увеличения количества гармоник и их выхода за допустимые пределы, необходимо задуматься о принятии решений для снижения их уровня, при этом предварительно проводятся измерения гармонических искажений, по результату которых уже определяются необходимые меры .

Измерение показателей гармоник в сети

Для анализа качества электросети и выявления высших гармоник применяются, в частности, многофункциональные измерительные приборы или по другому анализаторы качества электроэнергии.

Анализатор сети

Они позволяют получать подробную информацию по всем основным характеристикам качества электроэнергии, таким как:

  • коэффициент мощности
  • коэффициент амплитуды
  • среднеквадратичные значения тока и напряжения
  • значения активной, реактивной и полной мощности
  • активной и реактивной энергии в прямом и обратном направлении
  • суммарный коэффициент гармоник THD тока и напряжения
  • коэффициент n-й гармонической составляющей напряжения
  • дисбаланс напряжения
Читайте также  Что такое электризация тел и как она происходит

И целый ряд других параметров, которые по совокупности позволяют получить точную оценку не только гармонических величин, но и провести полный анализ состояния сетей.

Кроме этого, анализаторы имеют дополнительные функции, такие как ведение журнала событий, проверка последовательности чередования фаз, передача данных на верхний уровень по интерфейсу RS-485 или Ethernet, светодиодная индикация, дискретные входы и выходы.

Способы уменьшения гармонических составляющих

На основании полученных данных можно принимать решения о внедрении средств, направленных на уменьшение гармонических составляющих.

К основным способам уменьшения гармоник относятся разделение линейных и нелинейных нагрузок, обеспечение симметричного режима работы трехфазной системы, снижение полного сопротивления распределительной сети за счет увеличения сечения кабелей, применение линейных дросселей, применение изолирующих трансформаторов с обмотками «треугольник» и «звезда», применение пассивных и активных фильтров.

Одним из наиболее простых способов снижения уровня высших гармоник является установка линейных дросселей переменного тока. В частности, такой способ фильтрации широко применяется для подавления помех, возникающих при работе частотных преобразователей.

Сетевой дроссель

Дроссель имеет малое значение индуктивного сопротивления на основной частоте 50 Гц и большое значение сопротивления для высших гармоник, что приводит к их ослаблению. Помимо дросселей переменного тока, для частотных преобразователей могут применяться и дроссели звена постоянного тока.

Помимо дросселей широко применяются пассивные и активные фильтры.

Пассивный фильтр гармоник

Пассивные фильтры строятся на основе индуктивно-емкостной схемы (LC-фильтры), состоящей из продольных индуктивностей и поперечной цепи, состоящей из последовательно включенных индуктивности и емкости которые образуют последовательный колебательный контур, настроенный на определенную гармонику. Если необходимо уменьшение коэффициента искажения по нескольким гармоникам, можно использовать несколько параллельно включенных фильтров. Такой метод часто используется в цепях с источниками бесперебойного питания ( UPS).

LC-фильтр

Недостатком такого метода является его ограниченный только определенными гармониками эффект, поэтому для подавления всего спектра гармонических составляющих в сети используются активные фильтры.

Активный фильтр гармоник

Активный фильтр гармоник (АФГ) представляет собой электронное устройство, можно сказать является управляемым источником тока, подключаемым параллельно с нагрузкой, генерирующей высшие гармоники. Принцип действия основан на анализе гармоник нелинейной нагрузки и генерировании в распределительную сеть таких же гармоник, но противофазе. В результате высшие гармонические составляющие нейтрализуются в точке подключения фильтра и на выходе получается почти синусоидальная форма.

Такой метод благодаря своей эффективности является одним из наиболее действенных способов подавления высших гармоник, но не самым дешевым. Его применение оправдано там, где наблюдается большой уровень искажений.

Гармоники в электрических сетях, причины, влияние, методы борьбы

garm 1Наличие гармонических колебаний в электросети – это результат искажения Наличие гармонических колебаний в электросети – это результат искажения частоты тока или напряжения питания, которое может быть вызвано характером нагрузки или самим источником питания. Причины искажения: постоянные и непостоянные нелинейные нагрузки (работа выпрямителей, преобразователей частоты, трансформаторов разовое включение большого потребителя, например сварочного автомата или станка), цикличные нагрузки (крупный потребитель подключается в определенное время суток к сети), пиковые нагрузки при массовом потреблении электроэнергии. Часто причиной возникновения гармонических колебаний по напряжению является изношенность оборудования в энергогенерирующей отрасли и распределительных сетях (в основном, это старые ТП и сети с малым пределом потребления).

Источники гармонических токов:

— двигатели с плавным пуском, управляющие устройства (преобразователи частоты), блоки питания;

— печи (дуговые, индукционные), сварочные аппараты;

— энергосберегающие лампы (люминесцентные, дуговые, газоразрядные);

— современная бытовая и офисная техника.

garm 2

Критическим для сети переменного тока считается оборудование, способное вызывать гармоники, соответствующее 20% потребления по мощности. В таких случаях необходимо применять меры по устранению токовых искажений.

Последствия гармоник и защита

По сути, гармоники – это токи-паразиты, которые оборудование не может потребить или потребляет частично с негативным эффектом. В электродвигателях они являются причиной вибраций, в различных сетях приводят к перегреву, а если гармоника ниже чем номинальный синусоидальный ток необходимый для работы электротехники, то в сервоприводах, автоматических выключателях и другом оборудовании они могут вызывать ложные срабатывания.

Большая проблема – преждевременное старение электроизоляции в сетях с обилием гармоник. Гармоники, превышающие частоту номинального тока, вызывают нагрев проводников, при этом в изоляционных материалах начинаются термохимические процессы, меняющие их свойства. Следствием данных процессов являются пробои изоляции.

Важно! При наличии большого количества гармоник возможны однофазные КЗ с пробоем на землю. Также большое количество гармоник приводит к перегрузке нейтрали, что снижает степень защищенности системы.

Для защиты от гармоник в устройстве используются различные схемы. Основные:

— использование резистора, способного поглотить данный ток и перевести его в тепловую энергию;

— применение конденсаторов (выполняют роль компенсатора реактивной мощности);

— применение фильтров гармоник.

Для контроля сети используются современные анализаторы качества электроэнергии, способные контролировать от 10 параметров тока (уровни искажений в том числе) и выше с возможностью вывода информации на ПК.

Подробнее о гармониках можно указать из следующего видео:

Негативные последствия гармонических токов:

— перегрузка в распределительных сетях;

— перегрузка в нейтралях;

— перегрузка трансформаторов, генераторов, двигателей, что вызывает преждевременное старение оборудования;

— шум, вибрации, как следствие – механические разрушения неправильно работающих электроприводов;

— снижение надежности электронной части, повышение вероятности выхода ее из строя;

— помехи в линиях связи, коммуникационном оборудовании, записывающих устройствах.

Экономические последствия гармонических токов:

— внеплановые ремонт или замена оборудования;

— увеличение расхода электроэнергии за счет потерь;

— останови техпроцесса из-за ложных срабатываний автоматических выключателей;

— убытки, нанесенные в результате КЗ (остановка производства, ремонт, ликвидация пожара).

Что такое гармоники в электричестве

Корректная работа электроприборов, будь то бытовая техника или производственное оборудование, зависит от качества электроэнергии, о котором мы привыкли судить по стабильности напряжения и частоты, отсутствию резких скачков напряжения. При этом априори принято считать, что напряжение сети переменного тока изменяется строго по гармоническому закону и представляет собой идеальную синусоиду, однако это далеко не так.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Таким образом, реальное напряжение в сети представляет собой сумму основного сигнала и его гармонических составляющих. Для определения величин гармоник используют преобразование Фурье, при помощи которого исходный сигнал разлагается на сумму гармонических сигналов. Уровень гармоник или уровень влияния нелинейных искажений принято характеризовать коэффициентом нелинейных искажений.

Типы и источники появления гармоник

Для определения уровня искажения обычно рассматривают диапазон частот от 100 Гц (частота 2 гармоники) до 2000 Гц. Гармоническое искажение синусоидальных сигналов происходит благодаря двум типам паразитных колебаний:

  • гармониками, как уже упоминалось колебаниями частот кратных основной частоте 5 Гц, которые состоят из четных (100, 200, … Гц) и нечетных гармоник (150, 250 …);
  • интергармоникам, колебаниям, частоты которых не кратны основной частоте.
Читайте также  Как заточить ножи электрорубанка

Порожденные гармониками искажения происходят из-за нелинейных потребителей, вызывающих искажение фазных токов и, как следствие приводящих к нежелательным изменениям в фазных напряжениях. Типичным примером могут служить трехфазные трансформаторы, у которых длины магнитных путей для различных фаз отличаются почти вдвое, что требует различных величин (в полтора раза) токов намагничивания.

Другими источниками гармоник выступают электродвигатели, которые находят широкое применение как в трехфазных сетях питающих производственное оборудование, так и в бытовых однофазных (стиральные машины, кухонная бытовая техника, электроинструмент).

К источникам интергармоник можно отнести многочисленные импульсные блоки питания, оснащенные преобразователями частоты. Их сегодня используют повсеместно:

  • в маломощных зарядных устройствах для гаджетов;
  • в телевизорах и компьютерах;
  • в мощных инверторных сварочных аппаратах.

Они «насыщают» электрическую сеть колебаниями с частотами 20 кГц и даже выше, частоты некоторых современных ИБП могут достигать 150 кГц. Суммарное влияние интергармоник и высших гармонических колебаний вызывает появление помех.

Что такое гармоники в электричестве

Пятая гармоника имеет частоту в пять раз выше частоты основной гармоники. На рисунке отметки с цифрами.

Негативное воздействие и способы защиты

Появление гармоник в питающей сети не столь безобидно и может повлечь за собой вполне ощутимые последствия. Так они ведут к увеличению нагрева:

  • обмоток электродвигателей, что может обернуться пробоем на корпус;
  • обмоток трансформаторов с возможным разрушением изоляции и замыканием проводов;
  • питающих проводов с постепенной утратой изоляцией диэлектрических свойств.

При возникновении гармоники на одной из фаз трехфазной сети, она может вызвать асимметрию, что отразится на корректной работе оборудования. Гармоники приводят к ложным срабатываниям распределительной и защитной аппаратуры (УЗО, автоматы, пускатели), что угрожает технологическим процессам и безопасности персонала. От возникновения высших гармоник страдает качество связи. Основным средством борьбы с гармониками является фильтрация, причем схему фильтра выбирают исходя из конкретных требований. Это могут быть фильтры, пропускающие только основную частоту, а могут быть последовательные LC цепочки, настроенные на определенные гармоники (например, на пятую гармонику) и подавляющие их.

Смотрите также другие статьи :

Для проведения измерений используем современное и высокоточное оборудование от компании METREL. По результатам работ вы получите полный отчет в соответствии с ГОСТ 32144-2013. Благодаря этому вы сможете оптимизировать не только сами электросети, но и работающее от них оборудование.

Гармоники образуют импульсные источники питания бесчисленной электробытовой техники, источники бесперебойного питания, энергосберегающие люминесцентные лампы и т.д. Характерной чертой симметричной трехфазной сети при сбалансированных нагрузках является сдвиг токов на 120°.

Что такое гармоники в электрических сетях

График сигнала, который изменяется по синусоидальному закону, имеет вид:

График сигнала

Но это значительно отличается от реальной формы напряжения в электрической сети:

Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:

Результат сложения сигналов

Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:

Формула для расчета гармоник

Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.

Источники помех

К источникам помех можно отнести целый ряд оборудования, начиная от бытовых приборов, заканчивая мощными промышленными электрическими машинами. Для начала давайте кратко рассмотрим причины их возникновения.

Гармоники в электрической сети переменного тока возникают из-за особенностей электрооборудования, например из-за нелинейности их характеристик, или характера потребления тока.

Например, в трёхфазных сетях в магнитопроводах трансформаторов длины магнитных путей средних и крайних фаз различаются почти в 2 раза, поэтому и токи их намагничивания различаются до полутора раз. Отсюда возникают гармоники в трёхфазных сетях.

Другой источник помех в электротехнике — это электродвигатели, как трёхфазные синхронные и асинхронные, так и однофазные, в том числе и универсальные коллекторные двигатели. Последний тип двигателей используется в большей части бытовой техники, например:

  • стиральные машины;
  • кухонные комбайны;
  • дрели, болгарки, перфораторы и пр.

В результате работы импульсных блоков питания возникают высокочастотные гармоники (помехи) в электрической сети. Чтобы понять как они образуются, нужно иметь сведения об их внутреннем устройстве. Это связано с тем, что ток первичной обмотки ИБП отличается от непрерывного, он протекает только тогда, когда открыт силовой полупроводниковый ключ. А последний открывается и закрывается с частотой выше 20 кГц.

Интересно: Рабочая частота некоторых современных импульсных блоков питания достигает 150 кГц.

Для уменьшения этих гармоник используют фильтры электромагнитных помех, например, синфазный дроссель и конденсаторы. Для улучшения графика потребления тока относительно питающего однофазного напряжения используют активные корректоры коэффициента мощности (рус. ККМ, англ. PFC).

Такие блоки питания установлены в:

  • светодиодных лампах;
  • ЭПРА для люминесцентных ламп;
  • компьютерные блоки питания;
  • современные зарядные устройства для мобильных телефонов;
  • телевизоры и прочая техника.

Также к этим источникам питания можно отнести и преобразователи частоты.

Последствия гармонических помех

Наличие гармоник в электрической сети переменного тока вызывает определенные проблемы. Среди них – повышенный нагрев электродвигателей и питающих проводов. Последствия влияния гармоник – это вибрация двигателей. Дальнейшие последствия могут быть различными – начиная от ускоренного износа подшипников ротора двигателя, заканчивая пробоем на корпус обмоток от повышенного нагрева.

В электрике встречаются ложные срабатывания коммутационной и защитной аппаратуры – автоматических выключателей, контакторов и магнитных пускателей. В звуковой аппаратуре и технике для связи из-за гармоник возникают помехи. С ними борются аналогично – установкой фильтров электромагнитных помех.

На видео ниже рассказывается, что такое гармоники и интергармоники в электросети:

В заключение хотелось бы отметить, что гармоники в электрических сетях в принципе не несут никакой пользы. Они лишь вызывают неисправности, ложные срабатывания коммутационной аппаратуры и прочие проявления нестабильности в работе. Это может нести не только неудобства в эксплуатации, но и экономические проблемы, убытки и аварийные ситуации, которые могут быть опасны для жизни.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: