ГЕНЕРАТОР ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ

Генераторы импульсов

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц. Здесь приводятся простые схемы генераторов, в том числе на элементах цифровой «логики», которые широко используются в более сложных схемах как частотозадающие узлы, переключатели, источники образцовых сигналов и звуков.

На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 — напряжение низкого уровня; при нажатой кнопке — наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

Схема генераторов импульсов

На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор — цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток — необходимость использования конденсатора значительной емкости.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15. 17 В и токе 20. 50 мА.

В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 — длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1. 2 мкФ. Сопротивления резисторов R2, R3 — 10. 15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема — К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.

Схема генераторов импульсов

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1. 10 000 Гц. Микросхема — К561ЛН2.

Если нужна высокая стабильность генерируемой частоты, то такой генератор можно сделать «кварцованным» — включить кварцевый резонатор на нужную частоту. Ниже показан пример кварцованного генератора на частоту 4,3 МГц:

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема — К561ЛН2.

Схема генераторов импульсов

Цифровые микросхемы в генераторах взаимозаменяемы в большинстве случаев и можно использовать в одной и той же схеме как микросхемы с элементами «И-НЕ», так и «ИЛИ-НЕ», или же просто инверторы. Вариант таких замен показан на примере рисунка 5, где была использована микросхема с инверторами К561ЛН2. Точно такую схему с сохранением всех параметров можно собрать и на К561ЛА7, и на К561ЛЕ5 (или серий К176, К564, К164), как показано ниже. Нужно только соблюдать цоколевку микросхем, которая во многих случаях даже совпадает.

Микросхемы для генераторов импульсов

Если требуется повысить нагрузочную способность какого либо узла (чтобы, например, подключить динамик или другую нагрузку), можно применить на выходе усилитель на транзисторе, как в схеме на рис. 6, или же включить несколько элементов микросхемы параллельно, как показано на рисунке ниже:

Универсальная печатная макетная плата для двух микросхем. На таких платах удобно собирать несложные схемы с небольшим количеством деталей, как, например, приведенные в этой статье. Детали паяются к контактным площадкам и при необходимости соединятся перемычками. Размеры платы 100 х 55 мм.

Макетная плата

На рисунке ниже приводится цоколевка некоторых широко применяемых цифровых логических микросхем КМОП — технологии с элементами «И-НЕ», «ИЛИ-НЕ» и инверторов. Микросхемы серий К564, К176 имеют аналогичную цоколевку, цоколевка же микросхем серии К155 отличается от указанной (но такие уже давно не применяются). Питание указанных микросхем, как уже говорилось выше, может быть от 3 до 15 В (кроме серии К176, которая более критична к напряжению питания и нормально работает при 9В).

Простой генератор прямоугольных импульсов

При налаживании радиолюбительских конструкций бывает очень полезен источник испытательного сигнала. Им можно проверить телефоны или громкоговоритель, найти неисправный каскад, оценить вносимые искажения.
Такое средство есть — это генератор сигналов звуковой частоты.
Однако создание звукового генератора, вырабатывающего синусоидальный сигнал, дело непростое и довольно кропотливое, особенно в части налаживания. Дело в том, что любой генератор содержит, по крайней мере, два элемента: усилитель и частотнозависимую цепь, определяющую частоту колебаний.
Обычно она включается между выходом и входом усилителя, создавая положительную обратную связь (ПОС). В случае ВЧ-генератора все просто — достаточно усилителя на одном транзисторе и колебательного контура, определяющего частоту.
Для диапазона звуковых частот наматывать катушку сложно, да и добротность ее получается низкой. Поэтому для диапазона звуковых частот используют RC-элементы — резисторы и конденсаторы. Они довольно плохо фильтруют основную гармонику колебаний, и потому синусоидальный сигнал оказывается искаженным, например, ограниченным по пикам.
Для устранения искажений применяют цепи стабилизации амплитуды, поддерживающие низкий уровень генерируемого сигнала, когда искажения еще незаметны. Именно создание хорошей стабилизирующей цепи, не искажающей синусоидальный сигнал, и вызывает основные трудности.

Эти проблемы отсутствуют в релаксационных RC-генераторах, где усилительные транзисторы работают в ключевом режиме — они либо открыты, либо закрыты. Амплитуда генерируемого сигнала в таких генераторах очень стабильна и близка к напряжению питания. Но форма колебаний весьма далека от синусоидальной — сигнал получается импульсным, причем длительность импульсов и пауз между ними легко регулируется. Импульсам легко придать вид меандра, когда длительность импульса равна длительности паузы между ними.

Основной и широко распространенный вид релаксационного генератора — симметричный мультивибратор на двух транзисторах, схема которого показана на рисунке 1.

В нем два стандартных усилительных каскада на транзисторах VT1 и VT2 соединены в последовательную цепочку, то есть выход одного каскада соединен со входом другого через разделительные конденсаторы С1 и С2. Они же определяют и частоту генерируемых колебаний F, точнее, их период Т. Напомню, что период и частота связаны простым соотношением F = 1/T. Если схема симметрична и номиналы деталей в обоих каскадах одинаковы, то и выходное напряжение имеет форму меандра.
Работает генератор так: сразу после включения, пока конденсаторы С1 и С2 не заряжены, транзисторы оказываются в «линейном» усилительном режиме, когда резисторами R1 и R2 задается некоторый малый ток базы, он определяет в Вст раз больший ток коллектора, и напряжение на коллекторах несколько меньше напряжения источника питания за счет падения напряжения на резисторах нагрузки R3 и R4.
При этом малейшие изменения коллекторного напряжения (хотя бы из-за тепловых флуктуации) одного транзистора передаются через конденсаторы С1 и С2 в цепь базы другого.
Предположим, что коллекторное напряжение VT1 чуть-чуть понизилось. Это изменение передается через конденсатор С2 в цепь базы VT2 и немного его запирает. Коллекторное напряжение VT2 возрастает, и это изменение передается конденсатором С1 на базу VT1, он отпирается, его коллекторный ток возрастает, а коллекторное напряжение понижается еще больше. Процесс происходит лавинообразно и очень быстро.
В результате транзистор VT1 оказывается полностью открыт, его коллекторное напряжение будет не более 0.05…0.1 В, a VT2 — полностью заперт, и его коллекторное напряжение равно напряжению питания. Теперь надо ждать, пока перезарядятся конденсаторы С1 и С2 и транзистор VT2 приоткроется током, текущим через резистор смещения R2. Лавинообразный процесс пойдет в обратном направлении и приведет к полному открыванию транзистора VT2 и полному запиранию VT1. Теперь нужно ждать еще полпериода, нужные для перезарядки конденсаторов.
Время перезарядки определяется напряжением питания, током через резисторы R1, R2 и емкостью конденсаторов C1, С2.
При этом говорят о «постоянной времени» цепочек R1, С1 и R2, С2, примерно соответствующей периоду колебаний.
Действительно, произведение сопротивления в омах на емкость в фарадах дает время в секундах. Для номиналов, указанных на схеме рисунка 1 (360 кОм и 4700 пФ), постоянная времени получается около 1,7 миллисекунды, что говорит о том, что частота мультивибратора будет лежать в звуковом диапазоне порядка сотен герц. Частота повышается при увеличении напряжения питания и уменьшении номиналов R1, С1 и R2, С2.
Описанный генератор весьмн неприхотлив: в нем можно использовать практически любые транзисторы и изменять номиналы элементов в широких пределах. К его выходам можно подключать высокоомные телефоны, чтобы услышать звуковые колебания, или даже громкоговоритель — динамическую головку с понижающим трансформатором, например абонентский трансляционный громкоговоритель. Так можно организовать, например, звуковой генератор для изучения азбуки Морзе. Телеграфный ключ ставят в цепи питания, последовательно с батареей.

Читайте также  Отдельный автомат на электрический духовой шкаф

Поскольку два противофазных выхода мультивибратора в радиолюбительской практике нужны редко, автор задался целью сконструировать более простой и экономичный генератор, содержащий меньше элементов.
То, что получилось, показано на рисунке 2.

Здесь использованы два транзистора с разными типами проводимости — n-p-n и р-n-р. Открываются они одновременно, коллекторный ток первого транзистора служит током базы второго.
Вместе транзисторы образуют также двухкаскадный усилитель, охваченный ПОС через цепочку R2,C1.
Когда транзисторы запираются, напряжение на коллекторе VT2 (выход 1 В) падает до нуля, это падение передается через цепочку ПОС на базу VT1 и полностью его запирает. Когда конденсатор С1 зарядится до примерно 0,5 В на левой обкладке, транзистор VT1 приоткроется, через него потечет ток, вызывая еще больший ток транзистора VT2; напряжение на выходе начнет расти. Это возрастание передается на базу VT1, вызывая еще большее его открывание.
Происходит вышеописанный лавинообразный процесс, полностью отпирающий оба транзистора. Через некоторое время, нужное для перезарядки С1, транзистор VT1 призакроется, поскольку ток через резистор большого номинала R1 недостаточен для его полного открывания, и лавинообразный процесс разовьется в обратном направлении.
Скважность генерируемых импульсов, то есть соотношение длительностей импульса и паузы, регулируется подбором резисторов R1 и R2, а частота колебаний — подбором емкости С1.
Устойчивой генерации при выбранном напряжении питания добиваются подбором резистора R5. Им же в некоторых пределах можно регулировать выходное напряжение. Так, например, при указанных на схеме номиналах и напряжении питания 2,5 В (два дисковых щелочных аккумулятора) частота генерации составила 1 кГц, а выходное напряжение — ровно 1 В. Потребляемый от батареи ток получился около 0,2 мА, что говорит об очень высокой экономичности генератора.
Нагрузка генератора R3, R4 выполнена в виде делителя на 10, чтобы можно было снимать и меньшее напряжение сигнала, в данном случае 0,1 В. Еще меньшее напряжение (регулируемое) снимается с движка переменного резистора R4.
Эта регулировка может оказаться полезной, если нужно определить или сравнить чувствительность телефонов, проверить высокочувствительный УНЧ, подав малый сигнал на его вход, и так далее. Если же таких задач не ставится, резистор R4 можно заменить постоянным или сделать еще одно звено делителя (0,01 В), добавив снизу еще резистор номиналом 27 Ом.

Сигнал прямоугольной формы с крутыми фронтами содержит широкий спектр частот — кроме основной частоты F, еще и ее нечетные гармоники 3F, 5F, 7F и так далее, вплоть до радиочастотного диапазона. Поэтому генератором можно проверять не только звуковую аппаратуру, но и радиоприемники. Конечно, амплитуда гармоник убывает с ростом их частоты, но достаточно чувствительный приемник позволяет прослушивать их во всем диапазоне длинных и средних волн.

Стабильный генератор прямоугольных импульсов

Генераторы тактовых импульсов (ГТИ) – это своего рода задающие механизмы в большинстве сложных цифровых схем. На выходе ГТИ формируются повторяющиеся с определенной частотой электрические импульсы. Чаще всего они имеют прямоугольную форму. На основе этих колебаний синхронизируется работа всех включенных в устройство цифровых микросхем. За один такт выполняется одна атомарная операция (т.е. неделимая, та, которую нельзя выполнить или не выполнить частично).

Сгенерировать импульсы напряжения можно с различной степенью точности и стабильности. Но чем требовательнее схема к задающей частоте, тем точнее и стабильнее должен быть генератор.

1. Классические (аналоговые) генераторы. Они просты в сборке, но имеют низкую стабильность или генерируют не совсем прямоугольные импульсы. В качестве простейшего примера – LC-контуры или схемы на их основе.

2. Кварцевые (на основе кристаллов кварца). Здесь кварц выступает в качестве высокоизбирательного фильтра. Схема отличается высокой степенью стабильности и простотой сборки.

3. На основе программируемых микросхем (таких как Arduino). Решения тоже формируют стабильные импульсы, но в отличие от кварцевых могут управляться в заданных диапазонах и формировать сразу несколько опорных частот.

4. Автогенераторы. Это управляемые ГТИ, работающие преимущественно с современными процессорами, чаще всего интегрируются непосредственно в кристалл.

Таким образом, на роль стабильных генераторов прямоугольных импульсов в схемотехнике подходят:

  • Кварцевые
  • И программируемые (на основе программируемых микросхем).

Отдельно стоит упомянуть схемы классических одно- и мультивибраторов, работающих с применением логических элементов. Такой класс ГТИ однозначно может применяться в цифровых схемах, так как способен формировать стабильную частоту.

Кварцевый генератор повышенной стабильности

Один из примеров реализации.

Рис. 1. Схема кварцевого генератора

Схема строится на основе кварцевого резонатора и КМОП инвертора по принципу генератора Пирса.

За повышение стабильности отвечают конденсаторы увеличенной емкости Ca и Cb.

Мультивибраторы на основе логических элементов

Простейшая схема мультивибратора выглядит так.

Рис. 2. Схема мультивибратора

Фактически это колебательный контур на основе конденсаторов и сопротивлений. Логические элементы позволяют отсечь плавные фронты увеличения и снижения напряжения при заряде/разряде конденсатора в колебательном контуре.

График формирования напряжений будет выглядеть следующим образом.

Рис. 3. График формирования напряжений

За длительность импульса отвечает конденсатор C1, а за паузу между импульсами – C2. Крутизна фронта зависит от времени реакции логического элемента.

Обозначенная схема имеет один недостаток – возможен режим самовозбуждения.

Чтобы исключить этот эффект применяется еще один дополнительный логический элемент (смотри схему ниже – ЛЭ3).

Рис. 4. С хема мультивибратора

Генераторы на операционных усилителях

Тот же колебательный контур, но с интеграцией ОУ будет выглядеть так.

Рис. 5. Схема колебательного контура

График формирования импульсов на его выходе.

Рис. 6. График формирования импульсов на его выходе

Упомянутая выше схема формирует импульсы, время которых равно времени паузы, что не всегда должно быть так.

Внести асимметрию в частоту генерации можно следующим образом.

Рис. 7. Схема генератора импульсов

Здесь время импульсов и паузы между ними определяют различные номиналы резисторов.

Генератор на основе NE555

Микросхема NE555 – это универсальный таймер, способный работать в режиме мульти- или одновибратора.

Существует множество аналогов этой микросхемы: 1006ВИ1, UPC617C, ICM7555 и др.

Один из простых вариантов построения генераторов стабильных прямоугольных импульсов с возможностью подстройки частоты можно увидеть ниже.

Рис. 8. Вариант схемы генератора стабильных прямоугольных импульсов

Здесь в схему включаются различные конденсаторы (C1, C2, C3, их может быть и больше), и подстроечные резисторы (R2,R3, а R4 отвечает за уровень выходного тока).

Формула расчета частоты выглядит следующим образом.

Генератор на основе Arduino мы рассмотрим в отдельной статье.

Мнения читателей
  • Alex / 04.11.2019 — 10:17

На рис. 8 забавно включен светодиод LED1, без токоограничения.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Генераторы на ОУ: мультивибраторы

Всем доброго времени суток! Прошлая статья была посвящена компараторам и триггерам Шмитта на операционных усилителях. Я упоминал, что они служат основой для построения различных видов генераторов колебаний. Среди всех типов генерируемых сигналов можно выделить четыре основных формы импульса: прямоугольная, треугольная, пилообразная и синусоидальная. В соответствии с этими формами импульса получили названия и генераторы сигналов.

Читайте также  Как наказать соседей за хищение электричества?

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Принцип построения импульсных генераторов на ОУ

В предыдущих статьях я рассказывал об импульсных генераторах с различной формой импульсов, выполненных на транзисторах. Для простых устройств их, возможно, применять, но для создания сложных устройств с регулировкой различных параметров их схемы оказываются неоправданно трудоёмкими в настройке и разработке. Поэтому для упрощения схемотехнической реализации применяют генераторы импульсов в основе, которых лежат операционные усилители.

В общем случае для получения импульсов различной формы требуется замкнутая система, которая состоит из трёх основных частей: интегратора, компаратора и логической схемы.

Блок-схема генератора колебаний различной формы

Блок-схема генератора колебаний различной формы.

Хотя схема состоит из трех частей, но довольно часто в простых генераторах применяют один-два операционных усилителя. Для повышения гибкости и универсальности схем генераторов можно добавлять дополнительные ОУ.

Первой рассматриваемым генератором будет мультивибратор, то есть генератор прямоугольных импульсов.

Автоколебательный мультивибратор на ОУ

Автоколебательный мультивибратор или просто мультивибратор называют генератор прямоугольных импульсов. В его основе лежит триггер Шмитта или компаратор с гистерезисом, но в отличие от триггера напряжение в мультивибраторе формируется интегрирующей цепочкой R1C1. Ниже приведена схема мультивибратора на ОУ

Схема автоколебательного мультивибратора на операционном усилителе

Схема автоколебательного мультивибратора на операционном усилителе.

Данный мультивибратор состоит из операционного усилителя DA1, который охвачен положительной обратной связью через резисторы R2R3 и отрицательной обратной связью при помощи интегрирующей цепочки R1C1.

Рассмотрим работу мультивибратора. В основе работы мультивибратора лежит триггер Шмитта, который создается ПОС при помощи резисторов R2R3. Так как опорное напряжение триггера равно нулю, то напряжение верхнего порогового уровня будет равно

2405201601

а нижнего порога переключения триггера

2405201602

Таким образом, в момент подачи питания конденсатор полностью разряжен, то есть на инвертирующем входе ОУ напряжение равно нулю. В тоже время на выходе ОУ, вследствие неидеального ОУ, присутствует некоторое положительное напряжение, часть которого через ПОС R2R3 поступает на неинвертирующий вход ОУ. Далее происходит усиление этого напряжения и на выходе ОУ происходит дальнейший рост напряжения.

Напряжение с выхода ОУ поступает также через цепочку R1C1, но вследствие того, что интегрирующая цепочка задерживает сигнал, то рост напряжения на конденсаторе С1, а следовательно и на инвертирующем входе будет происходить медленнее, чем на неинвертирующем. И в результате разность напряжений на инвертирующем и неинвертирующем входе будет расти, а следовательно будет происходить рост выходного напряжения.

В некоторый момент времени напряжение на конденсаторе UC (а также на инвертирующем входе) достигнет напряжения верхнего порогового уровня UВП триггера Шмитта и выходное напряжение UВЫХ скачком станет равным отрицательному напряжению насыщения UНАС-. В результате чего ток через резистор R1 изменится на противоположный, а конденсатор С1 начнёт разряжаться. Разряд конденсатора будет происходить до напряжения нижнего порога переключения UВП триггера. После этого также скачкообразно произойдёт переключение выходного напряжения с отрицательного насыщения к положительному напряжению насыщения UНАС+ триггера Шмитта. Данные переключения иллюстрирует график расположенный ниже

График напряжений в мультивибраторе

График напряжений в мультивибраторе: на выходе мультивибратора (верхний) и на конденсаторе С1 (нижний).

Частота выходных импульсов мультивибратора зависит от постоянной времени интегрирующей цепочки R1C1, а также от ширины петли гистерезиса и в общем случае определяется следующим выражением

2405201603

Не трудно заметить, что при

2405201604

В случае равенства сопротивлений резисторов в цепи ПОС R2 и R3 соотношения будут выглядеть следующим образом

2405201605

Улучшение параметров мультивибратора

Стабильность частоты амплитуды генерирования простого мультивибратора, изображённого в начале статьи, во многом определяется стабильностью характеристик насыщения операционного усилителя, поэтому для улучшения параметров выходных импульсов (длительности и амплитуды) необходимо обеспечить стабильность амплитуды выходных импульсов и постоянной времени цепочки R1C1. Ниже приведена схема мультивибратора, в которой сведены к минимуму недостатки предыдущей схемы.

Улучшенная схема мультивибратора

Улучшенная схема мультивибратора.

В данной схеме мультивибратора введены дополнительные элементы: входные резисторы R1 и R3, повышающие входное сопротивление ОУ и двухсторонний параметрический стабилизатор R4VD1VD2, стабилизирующий амплитуду выходных импульсов. Введение резисторов R1 и R3 связано с тем, чтобы увеличить входное сопротивление ОУ, так как они снабжены защитой по входам при больших дифференциальных сигналах. Их величина выбирается на порядок больше, чем сопротивление резисторов R5 и R6 и имеет порядок сотен килом.

Ещё большего улучшения параметров мультивибратора можно добиться, если резистор в интегрирующей RC цепочке заметить транзисторным генератором тока.

Если ставится задача получения несимметричного мультивибратора, то резистор в цепи ООС заменяется двумя параллельными диодно-резисторными цепями, что изображено на рисунке ниже

Схема несимметричного мультивибратора на операционном усилителе

Схема несимметричного мультивибратора на операционном усилителе.

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже

 Схема ждущего мультивибратора (одновибратора) на операционном усилителе

Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

2405201606

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна

2405201607

В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением

2405201608

Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Генератор прямоугольных импульсов (ГПИ) на триггерах Шмитта К561ТЛ1, CD4093

У нас на Датагоре совсем недавно была статья «Генератор звуковой частоты на LM324. Прибор и игрушка» с описанием подобного генератора. Решил развить тему и собрать своё устройство.

При проектировании данной конструкции я исходил из следующих требований:
— простота и доступность деталей,
— автономное питание (желательно от батареи 9 В),
— малый потребляемый ток,
— малые размеры,
— регулировка выходного напряжения от десятых долей до 2 В,
— две фиксированные частоты для проверки НЧ и ВЧ,
— хорошая форма выходного сигнала.

↑ Схема генератора прямоугольных импульсов (ГПИ)

Обычно для ГПИ используются микросхемы К561ЛА7 или К561ЛЕ5, но мне захотелось использовать триггеры Шмитта.
Немного пояснений по схеме. Стабилизатор 78L05 по питанию я поставил из тех соображений, что размах напряжения на выходе более ±2 В нежелателен, легче будет выставлять небольшие выходные напряжения, да и стабильное питание не помешает. При отсутствии 78L05 можно смело обойтись без неё.

Читайте также  Как сделать перерасчет за электроэнергию и что важно знать об этом

Точные частоты 50 и 1000 Гц оказались не только не нужны, но и вредны. Дело в том, что линейность луча на осциллографе С1-94 на самых краях экрана плохая, что некритично для синусоиды, но неудобно именно для прямоугольника. Плавной регулировки по горизонтали у С1-94 нет, поэтому пришлось немного увеличить частоту и «отойти» по одной клетке экрана от краёв.

Сейчас я думаю, что лучше использовать частоты примерно 100 и 2000 Гц, уменьшив ёмкость С1 до 15 нФ, но переделывать свой вариант не буду.
Поскольку любительские конструкции часто имеют вход без разделительного конденсатора, я поставил его на выходе ГПИ и добавил перемычку, позволяющую его обойти. Иначе импульсы будут однополярные, что нежелательно, особенно для ламповых усилителей.

Для усилителей с разделительной ёмкостью на входе используется выход непосредственно с резистора R3, для усилителей без ёмкости на входе перемычка снимается и сигнал поступает через С2, С3.

↑ Внешний вид платы, детали, наладка

Коммутация перемычками (используются в компьютерной технике) выбрана из соображений минимальных размеров и доступности.

Резисторы SMD легко заменить на обычные, но тогда придётся сверлить отверстия. По два резистора последовательно я поставил для того, чтобы точно выставить нужные частоты, но в этом нет особой необходимости.

Батарея просто прикручена к плате скотчем — это простейшее и достаточно надёжное крепление. Ввиду очень малого тока, потребляемого генератором, батарея должна проработать не менее года.

Рисунок платы очень прост, вся конструкция годится для повторения начинающими радиолюбителями. При правильной сборке из исправных деталей, ГНЧ начинает работать сразу, наладка не требуется.
При желании можно подобрать частоту для удобного отображения на экране осциллографа.

↑ Интерпретация показаний и устранение застарелой ошибки

Генератор прямоугольных импульсов (ГПИ) на триггерах Шмитта К561ТЛ1, CD4093

а) идеальная форма при отсутствии частотных искажений, б), в) ослабление ВЧ умеренное и большое,
г) умеренное ослабление НЧ,
д) кривизна говорит об ослаблении и средних частот,
е), ж) в «оригинале» ошибочно говорится о подъёме на НЧ, конечно, это справедливо для е), а ж) — сильное ослабление НЧ и заметное СЧ.
з) небольшой спад на самых высоких частотах, в зависимости от частоты ГПИ спад может быть далеко за пределами звукового диапазона,
и) плавный провал на средних частотах,
к) неглубокий провал в узком диапазоне на средних частотах, скорее всего вызван каким-то резонансом, но процесс апериодический т. к. нет выбросов.

Колебания кривой на последних рисунках л) и м) показывают на неустойчивую работу усилителя, что хуже, чем просто частотные искажения, такие колебания могут быть незаметны при испытании синусоидальным сигналом!

Можно добавить, что получить импульсы, как на рис. а) возможно только для УПТ (усилителя постоянного тока), любые разделительные конденсаторы приводят к наклону верхушки импульса и даже если частота среза всего несколько Гц, при частоте импульсов 50 и даже 100 Гц, это приводит к форме показанной на рис. г).

Импульсы предложенного генератора при прямом изучении на экране осциллографа не идеальны, но, для звукового диапазона частот, этой «прямоугольности» хватает с многократным запасом.

↑ Практика!

Первый сюрприз – закрытый вход осциллографа заметно искажает меандр 50 Гц, это надо учесть.
Второй сюрприз – прямоугольный сигнал выявляет искажения самого осциллографа на разных участках экрана, особенно на краях и в углах экрана, при перемещении луча и т. д. Это тоже надо учитывать.

При частоте следования ГПИ 1000 Гц, форма сигнала практически идеальная (обратите внимание на положение переключателя развёртки, по нему можно судить о частоте подаваемых импульсов).
Линии на экране не совсем горизонтальны, после фотографирования мне пришлось разобрать его и сделать небольшую юстировку трубке.

↑ Влияние регулятора тембра

При включенных РТ (на экране осциллограмма линейного в диапазоне 20 Гц…20 кГц усилителя) малейшее изменение регулировки ВЧ вызывает заметный подъём или спад фронта в указанном месте.
Можно судить о том, линейна или нет АЧХ в среднем положении РТ, можно ли вообще этого добиться. Небольшой спад обманчив — АЧХ линейна, а область ниже 20 Гц нас (меня) не интересует. Поэтому можно вместо ГПИ 50 Гц использовать 100 Гц, кроме того, при очень низких частотах горизонтальной развёртки (5 мс на клетку и более) изображение мерцает, что неудобно.
Для упрощения будем считать, что диапазон РТ ±8 дБ на 100 Гц и 10 кГц.

Чтобы картина не была слишком благостной, вот пример неустойчивой, «нервной» работы усилителя с недостаточной коррекцией. При этом усилитель линейно работал в диапазоне 20…20000 Гц, а при проверке синусоидальным генератором Г3-102 наблюдался некоторый плавный горб в районе 80000 Гц.

↑ Итого

Делаем вывод — использование ГПИ и осциллографа быстро и наглядно показывает проблемы, которые могут быть не видны при обычной проверке генератором и вольтметром.
В небольшой статье невозможно перечислить все нюансы, но надеюсь, что часть владельцев осциллографов я убедил дополнить свой измерительный парк маленьким, простым, но полезным прибором.

Конструкции генераторов. Примеры схем

Конструкции генераторов. Примеры схем

Устройство без генератора либо вообще ни на что не способно, либо предназначено для подключения к другому (которое скорее всего содержит генератор). Не будет преувеличением сказать, что генераторы являются таким же необходимым устройством в электронике, как регулируемый источник питания постоянного тока.

В зависимости от конкретного применения генератор может использоваться просто как источник регулярных импульсов («часы» в цифровой системе). От него может потребоваться стабильность и точность (например, опорный интервал времени в частотомере), регулируемость (гетеродин передатчика или приемника) или способность генерировать колебания в
точности заданной формы (как например, генератор горизонтальной развертки осциллографа).

Релаксационный генератор
Очень простой генератор можно получить несложными манипуляциями. Зарядим конденсатор через резистор (или источник тока), а затем, когда напряжение достигнет некоторого порогового значения, быстро его разрядим и начнем цикл сначала. Это можно сделать с помощью внешней цепи, обеспечивающей изменения полярности тока заряда при достижении некоторого порогового напряжения. Следовательно, будут генерироваться колебания треугольной формы, а не пилообразные. Генераторы, построенные на этом принципе, известны под названием «релаксационные генераторы». Они просты и недороги и при умелом проектировании могут обеспечивать удовлетворительную стабильность по частоте.

Раньше для создания релаксационных генераторов применялись устройства с отрицательным сопротивлением, такие, как однопереходные транзисторы или неоновые лампы. Теперь предпочитают ОУ или специальные интегральные схемы таймеров. На рисунке показан классический релаксационный RС-генератор.

Конструкции генераторов. Примеры схем

Релаксационный генератор на базе операционного усилителя

Работает он просто. Допустим, что при начальном включении питания выходной сигнал ОУ выходит на положительное насыщение (каким образом это произойдет — неважно). Конденсатор начинает заряжаться до напряжения U + с постоянной времени, равной RC. Когда напряжение на конденсаторе достигнет половины напряжения источника питания, ОУ переключается в состояние отрицательного насыщения (он включен как триггер Шмитта). Конденсатор начинает разряжаться до U- с той же самой постоянной времени. Этот цикл повторяется бесконечно, с периодом 2,2 RС. Цикл не зависит от напряжения источника питания.

Применяя для заряда конденсатора источники тока, можно получить колебания хорошей треугольной формы. Пример удачной схемы (datasheet СА3160):

Конструкции генераторов. генератор, управляемый напряжением

Пример схемы генератора, управляемого напряжением

Иногда необходим генератор с очень низким уровнем шума (так называемый «низкий внеполосный шум»). В этом отношении хороша простая схема, показанная на рисунке:

Конструкции генераторов. генератор с низким уровнем шума

Генератор с низким уровнем шума

В схеме используется пара КМОП-инверторов (в виде цифровых логических схем). Соединение инверторов между собой образует некоторую разновидность RC релаксационного генератора с выходным сигналом в виде прямоугольного колебания. Измерения, проведенные для этой схемы, работающей на частоте 100 кГц, показали, что плотность мощности шума в ближайшей боковой полосе ниже, по крайней мере, на 85 дБ уровня основного колебания. Иногда встречается аналогичная схема, в которой заменяют местами элементы R2 и С. Хотя это и превосходный генератор, но он уже имеет крайне зашумленный выходной сигнал.

Представленная на рисунке ниже схема имеет даже более низкий уровень шума.

Конструкции генераторов. малошумящий генератор

Малошумящий генератор

Кроме того, имеется возможность модулировать выходную частоту с помощью внешнего тока, прикладываемого к базе транзистора Т1. В этой схеме транзистор Т1 функционирует как интегратор. На коллекторе Т1 вырабатывается сигнал асимметричной треугольной формы. Сами же инверторы работают в качестве неинвертирующего компаратора. Изменяют полярность возбуждения на базе каждые полпериода. Эта схема имеет плотность шума — 90 дБД/Гц, измеренную на частоте 100Гц смещения от несущего колебания 150 кГц, и —100 дБД/Гц, измеренную при смещении 300 Гц. Эти схемы превосходны в отношении уровня бокового шума. Но генерируемая частота имеет большую чувствительность к колебаниям напряжения источника питания.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: