Как получают переменный электрический ток

Получение переменного электрического тока

Переменным током, в традиционном понимании, называется ток, получаемый благодаря переменному, гармонически изменяющемуся (синусоидальному) напряжению. Переменное напряжение генерируется на электростанции, и постоянно присутствует в любой настенной розетке.

Для передачи электроэнергии на большие расстояния также используется именно переменный ток, поскольку переменное напряжение легко повышается при помощи трансформатора, и таким образом электрическую энергию можно передать на расстояние с минимальными потерями, а затем обратно понизить с помощью трансформатора до приемлемого для бытовой сети значения.

Получение переменного электрического тока

Генерация переменного напряжения (и соответственно тока) осуществляется на электростанции, где промышленные генер аторы переменного тока приводятся во вращение от турбин, движимых паром высокого давления. Пар получается из воды, которая сильно разогревается теплом, выделяемым в процессе ядерной реакции или при сжигании ископаемого топлива, в зависимости от типа конкретной электростанции. В любом случае, вращение генератора переменного тока — это и есть причина образования переменного напряжения и тока.

Для ответа на вопрос, как в генераторе образуется переменный ток, достаточно рассмотреть элементарную модель, состоящую из куска провода, и магнита, попутно вспомнив силу Лоренца и закон электромагнитной индукции. Допустим, провод длиной 10 см лежит на столе, а у нас в руке сильный неодимовый магнит, размер которого немного меньше провода. Присоединим к концам провода чувствительный гальванометр или стрелочный вольтметр.

Модель

Поднесем магнит одним из полюсов близко к проводу, на расстояние менее 1 см, и быстро проведем магнитом над проводом поперек него слева направо — пересечем магнитным полем магнита проводник. Стрелка гальванометра резко отклонится в определенную сторону, затем вернется в исходное положение.

Перевернем магнит другим полюсом к проводу. И снова, движением руки слева на право, быстро пересечем магнитным полем экспериментальный проводник. Стрелка гальванометра резко отклонилась в другую сторону, затем вернулась в исходное положение. Вместо того чтобы переворачивать магнит, можно сначала совершить движение слева направо, а потом — справа налево, эффект смены направления генерируемого тока получится аналогичным.

Эксперимент показал, что для получения переменного напряжения нам необходимо либо двигать магнит поперек провода вправо-влево, либо пересекать проводник чередующимися магнитными полюсами. В генераторе на электростанции (и во всех традиционных генераторах переменного тока) применен второй вариант.

Получение переменной электродвижущей силы

Принцип действия генератора — получение переменной электродвижущей силы (напряжения)

Получение синусоидального напряженияПеременное синусоидальное напряжение

Генератор переменного тока на электростанции состоит из ротора и статора. Механическая энергия вращающейся турбины передается ротору. Магнитное поле ротора сконцентрировано на его полюсных наконечниках, и создается либо закрепленными на нем постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора.

Обычно обмотка статора состоит из трех отдельных обмоток, смещенных относительно друг друга в пространстве, что приводит к возникновению переменного напряжения и тока в каждой из трех обмоток. Таким образом, каждая из трех обмоток статора является источником переменного напряжения, причем мгновенные значения напряжений смещены по фазе относительно друг друга на 120 градусов. Это и называется трехфазный переменный ток.

Получение трехфазного переменного напряжения и тока

Получение трехфазного переменного напряжения и тока

Ротор генератора с двумя магнитными полюсами, вращающийся с частотой 3000 оборотов в минуту, дает 50 пересечений каждой фазы обмотки статора за секунду. А поскольку между магнитными полюсами имеется нулевая точка, то есть место, где индукция магнитного поля равна нулю, то во время каждого полного оборота ротора наведенное в обмотке напряжение переходит через ноль, затем изменяет полярность. В результате напряжение на выходе имеет форму синусоиды и частоту 50 Гц.

Когда источник переменного напряжения соединен с нагрузкой, в цепи получается переменный ток. Напряжение и максимально допустимый ток статора тем больше, чем сильнее магнитное поле ротора, т.е. чем больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу основного генератора.

Как получают переменный электрический ток

Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки. Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась. Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.

Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.

Диск Фарадея

Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.

Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.

На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.

e = B*l*v*sinα

Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.

Ф=B*S*cosα

Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.

Способы получения переменного тока

Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.

Вращение рамки в магнитном поле

Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше. При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков. Таким образом получается не рамка, а катушка.

Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.

По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.

В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.

Устройство генератора переменного тока

На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока — ГПТ) или от полупроводникового возбудителя через щеточный аппарат. Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя. Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.

Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз. Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи. Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.

Электронные преобразователи

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Схема преобразователя

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Чистая и модифицированная синусоида

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В. Его можно использовать для питания различных нагревателей и ламп накаливания.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX — первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

Как получить переменный электрический ток?

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Читайте также  Возможна ли экономия электроэнергии с помощью инвертора?

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

где n – это количество витков обмоток

а соотношение B/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рамкой и магнитами

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Устройство асинхронного генератора

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Напряжение в трехфазной сети

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

схема синхронного генератора

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Схема инвертора

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Переменный ток

Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят – постоянный ток одной амплитуды.

Создание переменного тока

Создание переменного тока

Как образуется переменный ток

Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.

Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.

История открытия переменного тока

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.

Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.

Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.

Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Отличие переменного тока от постоянного

Школьный вариант трактовки переменного и постоянного тока

Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природные двух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:

  1. Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть – замалчивает работы с переменным током. Подобно Георгу Ому, ученый – талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
  2. Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.

Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.

Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.

Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Н. Тесла изучал переменный ток

Никола Тесла изучал электрические машины

Почему переменный ток используется чаще постоянного

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.

Никола Тесла: вопросы безопасности и эффективности

Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.

Читайте также  Что такое диэлектрические потери?

Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:

  • Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
  • В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.

Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.

Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.

Через эфир

Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».

Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.

Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.

Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!

Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Диполь антенна Герца

Диполь антенна Герца

Вибратор Герца, эфир, электромагнитная волна

Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.

Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда – противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.

Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».

Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.

Где используется переменный ток

Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:

  1. Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
  2. КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
  3. При помощи постоянного тока действуют магниты. К примеру, домофонов.
  4. Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
  5. Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.

В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы – неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.

  • alt=»Сила тока» width=»120″ height=»120″ />Сила тока
  • alt=»Трёхфазное напряжение» width=»120″ height=»120″ />Трёхфазное напряжение
  • alt=»Электрическая цепь» width=»120″ height=»120″ />Электрическая цепь
  • alt=»Трёхфазный ток» width=»120″ height=»120″ />Трёхфазный ток

Из этого текста так и неясно, кто же изобрел переменный ток и соответственно генератор переменного тока. А Фарадей все-таки экспериментировал с магнитными полями, в том числе и изменяющимися.

Тесла открыл для планеты переменный ток и создал чертежи очень многих электроприборов (изобретений). Затем раздавал патенты на это все окружающим “ученым” потому что сам – посвятил всю свою жизнь глобальным открытиям на благо человечества и не считал правильным тратить время на введение в обиход своих бытовых изобретений, потому и раздавал их ученым – чтобы те продолжили его дело, и человечество в результате получило конечные электро-продукты.
Достаточно почитать его биографию. Он даже семью не заводил потому, что любил все человечество сразу; и на благо человечества тратил каждую минуту своей жизни, забывая о себе.

Получение переменного электрического тока. Трансформатор

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Получение переменного электрического тока. Трансформатор»

Явление электромагнитной индукции, открытое Фарадеем, оказало определяющее влияние на всё дальнейшее развитие технической цивилизации. Один из великих учёных девятнадцатого века Герман Гельмгольц говорил, что «до тех пор, пока люди пользуются благами электричества, они всегда будут с благодарностью вспоминать имя Фарадея».

Рассмотрим ещё раз получение индукционного тока при помощи рамки и подковообразного магнита. Как вы помните, при вращении рамки в однородном магнитном поле, в ней возникает индукционный ток.

При этом стрелка гальванометра отклоняется то в одну то во вторую сторону. Это свидетельствует о том, что направление индукционного тока, как и его сила, непрерывно меняются от своего наибольшего значения, когда рамка с током расположена вдоль линий магнитной индукции, до нуля, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Если в качестве индикатора использовать не гальванометр, а, например, осциллограф, и повторить эксперимент, то при вращении рамки в магнитном поле осциллограф запишет все изменения тока. Нетрудно увидеть, что ток, возникающий в рамке, изменяется синусоидально.

Так вот, ток, периодически меняющийся со временем как по модулю, так и по направлению, называется переменным током.

Именно переменный ток используется в настоящее время в осветительной сети наших домов, а также во многих отраслях промышленности.

Рассмотренный нами опыт представляет собой пример работы простейшего генератора электрического тока. В настоящее время переменный ток получают в основном с помощью электромеханических индукционных генераторов, преобразующих механическую энергию в электрическую.

Индукционными они называются потому, что их действие основано на явлении электромагнитной индукции. Только в этих генераторах вращается не обмотка, в которой индуцируется переменный ток, а электромагнит. Вращающаяся часть генератора называется ротором и является источником магнитного поля.

Ротор располагается внутри стальной станины цилиндрической формы, называемой статором.

Во внутренней части статора имеются специальные пазы, в которые укладывается медный провод в виде витков. При вращении ротора в этих витках индуцируется переменный ток.

Ротор также имеет сложную форму и представляет собой стальной сердечник с навитой на него обмоткой, по которой протекает постоянный электрический ток. Создаваемое этим током магнитное поле вращается вместе с ротором.

Ротор генератора вращается при помощи какого-либо двигателя: на тепловых электростанциях с помощью паровой турбины, в небольших переносных генераторах — при помощи двигателя внутреннего сгорания, а на гидроэлектростанциях — с помощью гидротурбины.

Обратите внимание на то, что ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Дело в том, что на современных гидроэлектростанциях падающая вода вращает вал электрогенератора с частотой один — два оборота в секунду. Таким образом, если бы якорь генератора имел только одну обмотку, то получался бы переменный ток частотой 1—2 Гц. А стандартная частота переменного тока, используемого в электрических сетях России и странах Европы, равна 50 Гц. Кстати, это означает, что примерно через каждые 0,02 секунды направление тока меняется на противоположное. Такая частота переменного тока была выбрана с участием русского учёного Михаила Осиповича Доливо-Добровольского.

Однако, например, в США по рекомендации известного сербского учёного Николы Тесла, стандартная частота переменного тока равна 60 Гц.

Поэтому для получения переменного тока промышленной частоты якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока до необходимой величины.

И так, электрическую энергию производят на электростанциях. А для её передачи потребителям, часто находящимся очень далеко от станции, строят линии электропередач. Но при передаче электроэнергии неизбежны потери, связанные с нагреванием проводов: чем дальше от электростанции находится потребитель тока, тем больше энергии тратится на нагревание проводов и тем меньше её доходит до потребителя.

Потери на нагревание определяются законом Джоуля-Ленца:

Из него следует, что уменьшить потери можно двумя способами: это либо уменьшить сопротивление проводов, либо уменьшить силу тока в них.

Из восьмого класса вы знаете, что сопротивление будет тем меньше, чем больше площадь поперечного сечения проводника, и чем меньше его длина и удельное сопротивление металла, из которого он изготовлен.

Уменьшить длину проводов не предоставляется возможным. Из относительно недорогих металлов наименьшим удельным сопротивлением обладает медь и алюминий, из которых собственно и делают провода. Увеличивать же толщину проводов экономически невыгодно, так как это ведёт к перерасходу дорогостоящего цветного металла.

Следовательно, снижение потерь можно добиться только за счёт уменьшения силы тока. Но, чтобы не снижать мощности тока, уменьшение силы тока возможно только при увеличении напряжения.

Читайте также  АВТОМОБИЛЬНЫЙ КОМПРЕССОР НА РЕМОНТЕ

Так, например, электроэнергия Волжской ГЭС передаётся в Москву при напряжении около 500 кВ, а от Саяно-Шушенской ГЭС — при напряжении около 750 кВ. Хотя на самих электростанциях генераторы вырабатывают электрическую энергию при напряжениях, не превышающих 20 кВ. Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.

Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатора — устройства, служащего для преобразования силы и напряжения переменного тока при неизменной частоте.

Первый трансформатор был изобретён в тысяча восемьсот семьдесят шестом году русским учёным Павлом Николаевичем Яблочковым для питания изобретённых им же электрических свечей — нового в то время источника света.

Простейший трансформатор представляет собой две изолированные друг от друга катушки (их ещё называют обмотками), намотанные на общий замкнутый сердечник. По одной из обмоток (первичной) пропускается преобразуемый переменный ток, а вторичная обмотка соединяется с потребителем. Обратите внимание, что число витков в обмотках отличаются.

Протекающий по первичной обмотке переменный ток, создаёт в замкнутом сердечнике магнитное поле. Для уменьшения потерь энергии, сердечник ламинируют, то есть изготавливают из тонких, изолированных друг от друга пластин. Изолирующее покрытие пластин ограничивает индукционные токи в пределах каждого слоя, что заметно снижает силу индукционного тока. Таким образом, сердечник концентрирует магнитное поле так, что магнитный поток существует практически только внутри него и одинаков во всех его сечениях. Этот магнитный поток возбуждает ток самоиндукции в каждом витке первичной катушки. Этот же магнитный поток пронизывает витки вторичной катушки и создаёт в каждом её витке индукционный ток. В результате на концах вторичной обмотки возникает переменное напряжение. Значение этого напряжения определяется коэффициентом трансформации.

Коэффициентом трансформации называется отношение числа витков в первичной обмотке к числу витков во вторичной обмотке. В старших классах будет показано, что коэффициент трансформации можно определить и как отношение входного и выходного напряжений.

Как видно из формулы, в зависимости от числа витков в обмотках, коэффициент трансформации может быть меньше или больше единицы. В зависимости от этого различают повышающий трансформатор и понижающий…

Закрепления материала.

Но вернёмся к вопросу о передаче электроэнергии от электростанции к месту её потребления. Как мы говорили ранее, напряжение, вырабатываемое генератором, обычно не превышает 20 кВ. А для оптимальной передачи электроэнергии на большие расстояния требуется напряжение порядка сотен киловольт. Поэтому ток с электростанции сначала подаётся на расположенную неподалёку повышающую трансформаторную подстанцию, а затем подаётся в линии электропередач. Поскольку очень высокое напряжение не может быть предложено потребителю, то в конце линии его подают поочерёдно на несколько трансформаторных подстанций, понижающих напряжение до 380 В или 220 В, а затем — на предприятия или в жилые дома.

Получение переменного тока в быту и на производстве: теоретическая база, способы и приемы получения

получение, что собой представляет переменный ток

Переменный ток — это ток электрической цепи, который на протяжении определенного периода времени меняется по своему значению и направлению. В отдельных ситуациях его величина может меняться, а направление оставаться прежним.

Преимущество переменного тока перед постоянным током в том, что он дешевле по передачи и проще по преобразованию. В рамках данной публикации мы обсудим получение переменного тока в бытовых условиях и в промышленности. Начнем!

Основатель электромагнитной индукции

Электромагнитная индукция была открыта Майклом Фарадеем в начале 19 столетия. Этот физический закон теперь носит его имя. Он проводил эксперименты по получению переменного тока с двумя конструкциями.

Одна из них включала в себя железный стержень и два намотанных проводника, которые не имели связи друг с другом.

Он использовал специальный прибор для измерения силы малых постоянных электрических токов – гальванометр, и подключал его к источнику питания.

Прибор для получения тока, подключенный ко второму переходнику, заставлял стрелку прибора двигаться. Таким образом, он доказал, что получение магнитного поля оказывает влияние на движение заряженных частиц в проводнике.

Следующая конструкция, с которой был опыт по получению переменного тока – это диск. Это изделие, выполненное из металла, к которому подсоединяются два скользящих проводника.

Они в это время подключены к измерительному прибору. Фарадей раскручивал диск около магнита, после чего стрелка гальванометра также начала двигаться, показывая получение переменного тока.

Благодаря этим экспериментам, у ученого родилась формула, которая объясняет получение электротока и все происходившие процессы. Выглядит она следующим образом. «ЭДС индукции»:

где E – электродвижущая сила индукции;

N – количество намоток проводника, который двигают в силовом поле;

– насколько быстро меняется силовой поток касательно проводников.

В профессиональной литературе можно встретить еще одну формулу выражения получения электродвижущей силы. Она зависит от величины магнитной индукции, и выглядит следующим образом:

Давайте вспомним формулу, которая связывает магнитный поток и индукцию. Исходя из этого, можно понять, как была выведена формула ЭДС индукции через магнитную индукцию:

Именно по такому алгоритму происходило получение электротока в экспериментах. А теперь обсудим, какое отношение имеет получение переменный ток к бытовым процессам.

Как можно получить переменный электрический ток дома

Предположим, что мы имеем некоторую конструкцию, которая способна проводить переменный электрический ток. Что будет, если она попадет под влияние силового поля?

Если следовать формулам, которые мы привели выше, при вращении через данную конструкцию будет протекать переменный ток определённой напряженности.

Если конструкция будет оборачиваться равномерно, то на ее концах образуется цепь переменного электротока. Она будет иметь форму синусоиды.

Весь этот процесс объясняется тем, что через конструкцию в разных ее положениях проходит большое число различных силовых потоков.

Если конструкция вращается, то значение электродвижущей силы не будет распределяться равномерно, а будет коррелировать от положения осей конструкции.

Во время получения оборачиваемости токопроводящей конструкции от количества оборотов за определенное время будет зависеть, как частота переменного электротока, так и значение движущей силы на концах изделия.

Для того, чтобы движущая сила достигла некоторого значения при стабильной частоте, на проводнике добавляют количество намоток. Из-за этого проводимая конструкция превращается в катушку.

В промышленности цепь переменного электротока образовывается по такому же принципу.Сейчас можно встретить множество электрических станций, которые применяют генераторы с таким электрическим током.

Чаще всего применяют синхронные движки, которые удобно регулировать по частоте и величине электродвижущей силы переменного тока. Кроме этого, они устойчивы к вспышкам перегрузок в электрической сети.

На электрических станциях широкую популярность приобрели генераторы из трех фаз.

Этот вариант был выбран с точки зрения экономичности и технических характеристик, которые необходимы для получения движущегося силового поля.

А без него не будет работать ни один электрический двигатель, которые и лежат в основе работы любого электрического производства в нашей стране.

Подвижную часть любого двигателя (ротор)приводят в действие определенные силы. Количество полюсов может быть совершенно разным, при этом.

Например, если движущаяся часть оборачивается со скоростью 3000 оборотов в минуту, то, чтобы допиться величины переменного электротока с частотой около 50 Гц, необходим генератор с двойной полярностью.

Если же количество оборот сокращается в два раза, число полюсов возрастает с обратной пропорциональностью.

На движимой части двигателя (роторе) расположена намотка возбуждения, по которой поступает электроток от генератора-побудителя. Ток может поступать и от полупроводникового побудителя при помощи механизма со специальными щетками.

В отличие от коллекторных двигателей, щетки находятся на кольцах. Это обеспечивает изменение силового поля намоток по величине – во время регулирования электротока побудителя. При этом силовое поле катушки остается неизменным по знаку и направлению.

Исходя из этого принципа работы, выбираются предпочтительные условия для поддержания функционирования генератора с переменным электрическим током.

Как мы видим, переменный электроток для масштабных производств образовывается при помощи явления электромагнитной индукции.

Пример рассмотрен на основе генераторов с тремя фазами.В домашних условиях можно также применять и генераторы с одной фазой.

Для ремонтных работ чаще всего используют трехфазные механизмы. Это объясняется тем, что основные строительные приборы питаются от трехфазной сети.Это, например, бетономешалки, циркулярные пилы, некоторые модели сварочных приборов.

Обращаем ваше внимание, что для получения электротока подходят только синхронные генераторы. Асинхронные двигатели – не выдерживают большой нагрузки. Их чаще всего покупают для получения электрического обеспечения дач или коттеджей.

Цифровые инверторы для получения электротока

Следует сказать, что применение электрических станций на бензине или дизеле не всегда практично и удобно. Чтобы выйти из такой ситуации, нужно получение переменного электрического тока, преобразовав его в постоянный.

С этим справится специальный преобразовательный прибор – инвертор. Такой специальный прибор преобразует величину и характер электротока.

На рынке его мощность стартует от 12 или 24 Вольт и достигает 220. Логично, что эти инверторы постоянные 12 или 24 Вольта меняют на 220 Вольт переменного тока при частоте 50 Гц.

Эта схема образует цепь электротока в виде получения модифицированной синусоидальной линии.

Конечно, она не очень подойдет для питания индуктивной напряженности некоторых строительных инструментов, но для одноразового использования такой метод можно применять.

Отметим, что инверторы, для получения электротока, которые модифицируют синусоидальную линию электротока, стоят на порядок больше, а их конструкции намного сложнее.

На заметку! Если вы покупаете недорогие платы на китайских сайтах, не нужно думать, что частота будет 50 Гц. Большая часть таких приборов позволяет получать ток напряженностью 220В. Он подойдет для работы множества ламп Ильича или бытовых обогревателей.

На этом все! В данной статье мы постарались сжато объяснить, как происходит получение электротока переменной цепи для разных целей. Принцип такого получения известен человечеству уже более двухсот лет.

Запомните, что преимущественное большинство приборов, которые мы встречаем дома или на производствах, завязаны на использовании исключительно тока переменной цепи.

Верим, что данная информация была для вас полезной и интересной. В завершении рекомендуем ознакомиться с видеороликом, где специалисты показывают работу генератора по получению переменного электротока.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: