Как работает конденсаторный электродвигатель и для чего он нужен

Конденсаторные двигатели — устройство, принцип действия, применение

Конденсаторные двигатели - устройство, принцип действия, применение В этой статье поговорим о конденсаторных двигателях, которые по сути являются обычными асинхронными, отличающимися лишь способом подключения к сети. Затронем тему подбора конденсаторов, разберем причины необходимости точного подбора емкости. Отметим основные формулы, которые помогут в приблизительной оценке требуемой емкости.

Конденсаторным двигателем называется асинхронный двигатель, в цепь статора которого включена дополнительная емкость, с целью создать сдвиг фаз тока в обмотках статора. Зачастую это касается однофазных цепей при использовании трехфазных или двухфазных асинхронных двигателей.

Обмотки статора асинхронного двигателя физически сдвинуты друг относительно друга, и одна из них включается непосредственно в сеть, в то время как вторая, либо вторая и третья подключаются к сети через конденсатор. Емкость конденсатора подбирается так, чтобы сдвиг фаз токов между обмотками получился бы равным или хотя бы близким к 90°, тогда ротору будет обеспечен максимальный вращающий момент.

При этом модули магнитной индукции обмоток должны получиться одинаковыми, чтобы магнитные поля обмоток статора оказались бы сдвинуты относительно друг друга так, чтобы суммарное поле вращалось по кругу, а не по эллипсу, увлекая за собой ротор с наибольшей эффективностью.

Очевидно, ток и его фаза в подключенной через конденсатор обмотке связаны как с емкостью конденсатора, так и с эффективным импедансом обмотки, который в свою очередь зависит от скорости вращения ротора.

При старте двигателя импеданс обмотки определяется лишь ее индуктивностью и активным сопротивлением, поэтому он относительно мал в момент пуска, и здесь нужен конденсатор большей емкости для обеспечения оптимального пуска.

Когда же ротор разгонится до номинальных оборотов, магнитное поле ротора станет индуцировать в обмотках статора ЭДС, которая будет направлена против питающего обмотку напряжения — эффективное сопротивление обмотки теперь растет, и требуемая емкость снижается.

При оптимально подобранной емкости в каждом режиме (пусковой режим, рабочий режим) магнитное поле будет круговым, и здесь имеет значение как скорость вращения ротора, так и напряжение, и число витков обмотки, и подключенная в текущий момент емкость. Если оптимальное значение какого-нибудь параметра нарушено, поле становится эллиптическим, характеристики двигателя соответственно падают.

Для двигателей разного назначения схемы подключения емкостей разные. Когда требуется значительный пусковой момент, применяют конденсатор большей емкости, чтобы обеспечить оптимальные ток и фазу именно в момент пуска. Если пусковой момент не особо важен, то внимание уделяют только созданию оптимальных условий рабочего режима, при номинальной скорости вращения, и емкости подбирается для номинальных оборотов.

Довольно часто для качественного пуска применяют пусковой конденсатор, который на время запуска подключается параллельно рабочему конденсатору относительно малой емкости, чтобы вращающееся магнитное поле и при пуске было круговым, затем пусковой конденсатор отключают, и двигатель продолжает работу только с рабочим конденсатором. В особых случаях прибегают к набору конденсаторов с возможностью переключения для разных нагрузок.

Конденсаторный двигатель

Если пусковой конденсатор случайно не будет отключен после выхода двигателя на номинальные обороты, сдвиг фаз в обмотках уменьшится, не будет уже оптимальным, и магнитное поле статора станет эллиптическим, что ухудшит рабочие характеристики двигателя. Крайне важно правильно подобрать пусковую и рабочую емкости, чтобы двигатель работал эффективно.

На рисунке показаны типичные схемы включения конденсаторных двигателей, применяемые на практике. Например рассмотрим двухфазный двигатель с короткозамкнутым ротором, статор которого имеет две обмотки для питания в двух фазах А и В.

Типичные схемы включения конденсаторных двигателей

В цепь дополнительной фазы статора включен конденсатор С, поэтому токи IA и IВ текут в обеих обмотках статора в двух фазах. Наличием емкости добиваются фазового сдвига токов IA и IВ в 90°.

Векторная диаграмма показывает, что суммарный ток сети образован геометрической суммой токов обеих фаз IA и IВ. Подбором емкости С добиваются такого сочетания с индуктивностями обмоток, чтобы фазовый сдвиг токов получился именно 90°.

Векторная диаграмма конденсаторного двигателя

Ток IA запаздывает относительно приложенного сетевого напряжения UА на угол φА, а ток IВ — на угол φВ относительно напряжения UB, приложенного к зажимам второй обмотки в текущий момент. Угол между напряжением сети и напряжением, приложенным ко второй обмотке составляет 90°. Напряжение на конденсаторе UС образует угол 90° с током IВ.

По диаграмме видно, что полная компенсация фазового сдвига при φ = 0 достигается тогда, когда реактивная мощность потребляемая двигателем из сети равна реактивной мощности конденсатора С. Рядом на рисунке показаны типичные схемы включения трехфазных двигателей с конденсаторами в цепях обмоток статоров.

Промышленностью сегодня выпускаются конденсаторные двигатели на базе двухфазных. Трехфазные легко модифицируются вручную для питания от однофазной сети. Встречаются и мелкосерийные трехфазные модификации, уже оптимизированные при помощи конденсатора под однофазную сеть.

Часто такие решения можно встретить в бытовых приборах, таких как посудомоечные машины и комнатные вентиляторы. Промышленные циркуляционные насосы, воздуходувки и дымососы также часто используют в своей работе конденсаторные двигатели. Если требуется включить трехфазный двигатель в однофазную сеть — применяют фазосдвигающий конденсатор, то есть опять же переделывают двигатель в конденсаторный.

Для приблизительного расчета емкости конденсатора применяют известные формулы, в которые достаточно подставить напряжение питания и рабочий ток двигателя, и легко вычислить необходимую емкость для соединения обмоток звездой или треугольником.

Для нахождения рабочего тока двигателя достаточно прочитать данные на его шильдике (мощность, кпд, косинус фи), и так же подставить в формулу. В качестве пускового конденсатора принято устанавливать конденсатор в два раза большей емкости, чем рабочий.

Однофазный конденсаторный двигатель

К преимуществам конденсаторных двигателей, по сути — асинхронных, относится главным образом одно — возможность включить трехфазный двигатель в однофазную сеть. Из недостатков — необходимость оптимальной емкости под конкретную нагрузку, и недопустимость питания от инверторов с модифицированной синусоидой.

Надеемся, что эта статья была для вас полезной, и теперь вы понимаете, для чего асинхронным двигателям конденсаторы, и как подбирать их емкость.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Как работает конденсаторный электродвигатель и для чего он нужен

В современном оборудовании используется несколько разные виды электродвигателей. Разные по конструкции, характеристиками и принципу работы все эти двигатели подбираются для каждого конкретного случая по своим параметрам. Вместе с тем, довольно часто в приборах и оборудовании необходимы электродвигатели с возможностью подключения к однофазной сети. Одним из подходящих вариантов выступает конденсаторный электродвигатель, устройство и принцип работы которого мы рассмотрим в пределах данной статьи.

Устройство и принцип работы

Говоря о конденсаторных асинхронных двигателях, речь в первую очередь будет идти об электромоторах, изначально рассчитанных для подключения к однофазной сети. Это несколько перекликается с двухфазными или трехфазными двигателями, переделанными для подключения в обычную однофазную сеть на 220 Вольт. Но существенным отличием этих электродвигателей выступает то, что здесь конденсатор выступает как обязательное условие электрической схемы и включение в трёхфазную сеть 380 Вольт такого асинхронного двигателя просто невозможно.

Устройство и принцип работы конденсаторного двигателя основаны на физических свойствах асинхронного двигателя, но для создания движущей силы и вращения магнитного поля в цепь обмоток включен пусковой конденсатор.

По своему устройству он не отличается от обычного асинхронника и в составе имеет:

  1. Неподвижный статор в массивном корпусе с рабочей и пусковой обмотками.
  2. Закрепленный на валу ротор, приводимый в движение силой электромагнитного поля, создаваемого обмотками статора.

Обе части электродвигателя соединены между собой на подшипниках качения или скольжения (втулки), закрепленных в крышках корпуса статора.

По принципу работы конденсаторный электродвигатель, как отмечалось выше, относится к асинхронным – движение осуществляется за счет создания электромагнитного поля обмотками статора, сдвинутыми относительно друг друга на 90 градусов. Единственное отличие от трехфазных асинхронных электродвигателей заключается во включенном в цепь конденсаторе, через который включаются вторая обмотка электродвигателя.

Диаграммы токов в обмотках трёхфазного двигателя (а) и конденсаторного (б)

Обычный асинхронный двигатель при включении в сеть начинает работу с пусковой обмоткой. После того как ротор набрал обороты, пусковая обмотка отключается и работу продолжает только рабочая обмотка. Минусом такого электромотора с пусковой обмоткой выступает момент пуска, когда ротор начинает набор оборотов. Для электродвигателя важно чтобы в этот момент не было нагрузки, или нагрузка была небольшой. Пусковой момент получается ниже, чем у аналогичных по мощности трёхфазных моторов.

В схеме подключения конденсаторного асинхронного двигателя есть фазосдвигающий конденсатор. При подключении в сеть через конденсатор во второй обмотке возникает сдвиг фаз, равный 90 градусам (на практике немного меньше). Это способствует тому, что в работу ротор включается с максимально возможным крутящим моментом.

Такой запуск обеспечивает включение двигателя как на холостом ходу, так и под нагрузкой. Это очень важно для подключения двигателя под нагрузкой. На практике по такой схеме подключается мотор от стиральной машины старых моделей. В момент пуска двигатель должен начать вращать воду в баке, а это существенная нагрузка на электродвигатель. При отсутствии пускового конденсатора двигатель не будет запускаться, он будет гудеть, греться, но работать не будет.

Виды конденсаторных двигателей

Схема подключения, при которой конденсаторный асинхронный двигатель запускается только от пускового конденсатора, имеет один существенный минус. Во время работы магнитное поле не остается круговым или эллиптическим, показатели работы падают, а электродвигатель греется. В таком случае для оптимального режима в цепь включается рабочий конденсатор, обеспечивающий постоянный сдвиг фаз, а не только в момент пуска.

Отметим, что можно выделить две группы конденсаторных двигателей:

  1. Конденсатор нужен только для пуска, тогда его называют пусковым. Обычно это маломощные приборы.
  2. Конденсатор нужен для постоянной работы, в этом случае его называют рабочим. В машинах большой мощности (несколько кВт) для пуска под нагрузкой может не хватать момента, и тогда подключают дополнительно еще один пусковой конденсатор. Чаще всего это делают с помощью кнопки ПНВС.

Подробнее со схемой подключения и тем как отличить эти типы однофазных двигателей вы можете ознакомиться в следующем видео ролике:

В международной классификации применяются обозначения для типов конденсаторных асинхронных двигателей:

  • двигатель с пуском через конденсатор/работа через обмотку (индуктивность) (CSIR);
  • двигатель с пуском через конденсатор/работа через конденсатор (CSCR);
  • двигатель с постоянным разделением емкости (PSC).

Схема подключения с рабочим конденсатором (а) и с рабочим и пусковым (б)

Как работает такая схема представить несложно: пусковой конденсатор большой емкости обеспечивает пуск двигателя, а после набора мощности рабочий меньшей емкости обеспечивает максимально подходящий режим работы и скорости вращения ротора.

Конденсаторы в двигателе

Для особых случаев, когда необходимо поддерживать необходимую скорость вращения ротора при разных нагрузках для рабочих конденсаторов, подбирают разные емкости с возможностью их переключения.

Чтобы изменить направление вращение, иначе говоря, включить реверс, нужно поменять местами концы одной из обмоток. Для этого удобно использовать 6 контактный тумблер.

Схема реверса однофазного электродвигателя

Как подобрать емкость для пускового конденсатора

Сразу стоит сказать, что на шильдике двигателя обычно указывается ёмкость пускового и рабочего конденсатора (или только рабочего, если пусковой не нужен). При этом указываются точные данные характерные для конкретно этого электродвигателя с его особенностями устройства и работы.

Читайте также  Нормы отключения электроэнергии

Обозначение ёмкости на шильдике однофазного электродвигателя

Если шильдик затёрт или отсутствует, то рассчитать ёмкость рабочего и пускового конденсатора для однофазного можно скорее не по формуле, а по мнемоническому правилу:

Сумма рабочего и пускового конденсатора должна составлять 100 мкФ на 1 кВт мощности (70% пусковой и 30% рабочий). Если двигатель 1 кВт, то рабочий конденсатор нужен на 30 мкФ, а пусковой – на 70. А сами конденсаторы должны быть рассчитаны на напряжение больше чем в питающей сети. Обычно выбирают порядка 400 Вольт.

Но в литературе можно встретить и рекомендации о том, что, что ёмкость пускового конденсатора должна быть больше, чем емкость рабочего в 2 раза.

Таблица выбор ёмкости конденсатора

Как проверить работоспособность конденсатора подскажет статья, выложенная на нашем сайте ранее — https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html

Сфера практического применения

Конденсаторные асинхронные электродвигатели используются в бытовых электровентиляторах, холодильниках, некоторых современных стиральных машинах, практически во всех стиральных машинах производства СССР. Но в вытяжках чаще применяются двигатели с расщепленными полюсами без конденсатора, тем не менее, можно встретить модели и с рассматриваемым типом электродвигателя.

Кроме бытовой техники их сфера применения распространяется и на насосы мощностью до 2-3 кВт, компрессоры и различные станки с однофазным питанием, в общем, на все, что должно вращаться и работать от 220 Вольт.

Вот мы и рассмотрели, что такое конденсаторный двигатель, как он устроен и для чего нужен. Надеемся, предоставленная информация помогла вам разобраться в вопросе!

Конденсаторный двигатель: устройство, принцип действия и сферы его использования

Принцип функционирования конденсаторного электродвигателя и сферы его использования

Все больше на рынке появляется разновидностей электродвигателей. Для каждого отдельного случая необходимы определенные технические характеристики, общий конструктивный вид и так далее.

При этом, мы все чаще встречаем запросы от потребителей на такие электродвигатели, которые можно подключать к однофазной сети.

Именно о таком электродвигателе мы и поговорим в рамках этой статьи. Мы расскажем об одном из асинхронных электродвигателей, его достоинствах и недостатках и обсудим сферы его применения.

Как устроен механизм и за счет чего он функционирует

Разновидностью асинхронного электродвигателя является конденсаторный. Эта модель начинает работать при подключении к однофазной сети.Она имеет некоторые схожие свойства с электродвигателями, для трехфазной и двухфазной сети, переделанными для сети в 220В.

Этот электродвигатель никак нельзя переделать. Он других его отличает то, что он конденсаторный, и занимает важное место во всей электрической схеме прибора. Подсоединить конденсаторный электродвигатель к трехфазной сети в 380В не представляется возможным.

Сам механизм и его функционирование полностью основываются на принципе работы обычной асинхронной электрической машины. Но в данном случае, чтобы создать побуждающую силу и задать скорость оборотам силового поля, в цепи обмоток вставлен пусковой конденсаторный механизм.

Принцип функционирования конденсаторного электродвигателя и сферы его использования

«Начинка» такого механизма аналогична «начинке» разновременного электродвигателя. Она состоит из следующих частей:

  1. Недвижимая часть (статор) в огромном каркасе с действующей и импульсной намотками;
  2. Движимая часть (ротор), установленный на валу. В работу он входит благодаря движущей силе силового поля, которую образуют намотки недвижимой части.

Эти два элемента электродвигателя закрепляются друг с другом при помощи специальных подшипников или втулок, которые установлены со внешней стороны каркаса статора.

Выше мы уже говорили о том, что само функционирование конденсаторного электродвигателя похоже на работу обычного разновременного двигателя. То есть, действие образуется при помощи силового поля от катушек неподвижной части механизма.

По отношению одного к другому они сдвинуты под прямым углом.Разница между аналогичными моторами для сети с тремя фазами заключается в том, что из-за конденсаторного механизма в цепи начинает работать вторая катушка электродвигателя.

Стандартный разновременный прибор при соединении с электросетью начинает работать с импульсной намоткой. Когда движимая часть (ротор) разогналась до определенной скорости, импульсная намотка автоматически выключается и работать остается действующая намотка самостоятельно.

Пожалуй, главным недостатком такого принципа работы является именно начало запуска, когда движимая часть начинает вращаться.

Чтобы конденсаторный электродвигатель нормально функционировал, при запуске необходимо контролировать уровень напряжения. Он должен быть минимальным или вообще отсутствовать. Запуск происходит медленнее, в отличие от таких двигателей для сети в 380 Вольт.

В электрической схеме подсоединения данного разновременного механизма присутствует конденсаторный механизм, который сдвигает фазы.Во время подсоединения прибора к электрической сети, из-за конденсаторного устройства во второй катушке начинается движение фаз под прямым углом.

На деле эта величина сдвига оказывается несколько меньше. Благодаря этому, движимая часть механизма (ротор) начинает работу на очень высокой скорости. На схеме внизу видно схему подключения с рабочим конденсаторным устройством.

Принцип функционирования конденсаторного электродвигателя и сферы его использования

В силу такого принципа работы, электродвигатель будет включаться, как при нулевой нагрузке, так и при большом напряжении. Этот момент очень важен в работе всего конденсаторного механизма.

Например, по такому способу запускается движок на стиральных машинках старого образца.Во время начала работы движок должен начать крутить барабан с водой, что оказывает серьезную нагрузку на сам электродвигатель.

Если же в цепи нет импульсного конденсаторного устройства, электрический двигатель не будет работать. Вы получите только сильный шум и перегрев элементов.

Разновидности конденсаторных электродвигателей

Принцип введения в действие такого механизма, когда конденсаторный электродвигатель начинает работу исключительно за счет импульсного конденсаторного имеет один большой недостаток.

Когда прибор функционирует, силовое поле перестает принимать форму круга или эллипса, а все величины на датчиках уменьшаются, конденсаторный электродвигатель начинает нагреваться.В этой ситуации на помощь приходит конденсаторный (действующий).

Он обеспечивает непрерывное движение фаз прибора не только во время запуска. Работа всего конденсаторного механизма в целом оптимизируется.

Все изделия можно разделить на две большие группы однофазных конденсаторных электродвигателей, такие как:

  1. Приборы, которым необходим только импульсный конденсаторный электродвигатель. Они имеют небольшую мощность;
  2. Приборы, которым необходим действующий конденсаторный. В некоторых механизмах с напряженностью в две или три тысячи ватт, для запуска под большим напряжением может быть недостаточно использование одного импульсного конденсаторного устройства в цепи. В основном в этих ситуациях применяют нажимные пускатели ПНВС.

Чтобы вы точно поняли эти моменты, оставляем вам видео урок. Специалисты покажут, как отличить несколько видов движков для сети с одной фазой.

Стандартизация требует, чтобы маркировка разновременных двигателей с конденсатором осуществлялась следующим образом:

  • движок с запуском через конденсатор и функционированиепри помощинамотки (индуктивность) (CSIR);
  • движок с запуском через конденсатор и работа при помощи него же (CSCR);
  • движок с непрерывнымделением резервуара (PSC).

На деле такой механизм функционирует по следующему принципу: импульсный конденсатор большегорезервуарапобуждаетзапуск мотора, а когда напряженность достигла нужной величины,действующий резервуар меньшего размера способствует образованию максимально комфортного темпа работы и скорости оборотов движимой части мотора.

На заметку! В тех ситуациях, когда нужно удерживать определенный темп вращения движимой части двигателя при любом напряжении, выбирают резервуары разных размеров со способностью менять на них акценты.

Для того чтобы поменять направленность оборотов (выполнить реверсирование), необходимо поменять между собой концы одной из катушек. Специалисты рекомендуют применять специальный переключатель с 6 контактами.

Как правильно выбрать резервуар под конденсатор

Для начала необходимо отметить то, что на информационной табличке, которая расположена на щитке мотора, написан объем импульсного и действующего конденсаторов. Или одного из них.

Кроме того, обратите внимание, что на табличке указаны конкретные технические характеристики для определённой модели электродвигателя со своими свойствами.

В том случае, когда информация на щитке видна неразборчиво, определить резервуар для импульсного и действующего конденсатора можно, используя технику мнемоники.

Общая сумма импульсного и действующего конденсатора должна равняться – 100 мкФ на 1 кВт мощности (70% импульсный и 30% действующий). В случае, когдамотор с мощностью 1 кВт, то действующий конденсатор подбирайте на 30 мкФ, а импульсный – на 70 мкФ.

Помните, что сами конденсаторы должны выдерживать нагрузку в несколько раз больше, чем в подключаемой электросети.Специалисты советуют остановить свой выбор на 450 Вольт.

В старых профессиональных учебниках вы могли видеть другой способ расчета. Резервуар импульсного конденсатора должен быть в два раза больше, чем резервуар действующего. Таким правилом тоже можно руководствоваться при подборе.

На нашем сайте можно найти статью «Как правильно проверить работает ли конденсатор?». Рекомендуем с ней ознакомиться!

Области использования асинхронного двигателя с конденсатором

Электрические разновременные двигатели с конденсатором можно встретить почти во всех образцах старых стиральных машинок и в некоторых новых. Кроме того, они присутствуют в холодильниках и электрических ветродуйках.

На кухне они могут быть еще и в вытяжных устройствах. Хотя в основном там используются моторы без конденсатора с расщепленной полярностью.

Также такие электродвигатели можно встретить не только в домашних условиях, но и еще, например, в насосах с небольшой мощностью, станках на производстве, которые питаются от сети в 220 Вольт и в разных видах автомобильных компрессоров.

На этом все! Мы рассказали об асинхронном электродвигателе для однофазной сети, о его достоинствах и недостатках. Верим, что информация была изложена доступно и оказалась для вас полезной. Если вы хотите оставить свой комментарий, сделайте это после окончания статьи.

Назначение и подключение пусковых конденсаторов для электродвигателей

Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.

пусковые конденсаторы для электродвигателей

Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?

Все конденсаторы, в том числе и пусковые, имеют следующие особенности:

  1. В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритных размерах – особенность полярных накопителей.
  3. Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.

Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.

Назначение и преимущества

пусковой конденсатор для электродвигателей

Используются конденсаторы рассматриваемого типа в системе подключения асинхронного двигателя. В данном случае, он работает только на момент пуска, до набора рабочей скорости.

Наличие подобного элемента в системе определяет следующее:

  1. Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
  2. Проводится значительное повышение показателя магнитного потока.
  3. Повышается пусковой момент, значительно улучшается работа двигателя.

Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.

Преимущества сети, которая имеет подобный элемент, заключаются в следующем:

  1. Более простой пуск двигателя.
  2. Срок службы двигателя значительно больше.

Пусковой конденсатор работает на протяжении нескольких секунд на момент старта двигателя.

Схемы подключения

схема подключения электродвигателя с пусковым конденсатором

Большее распространение получила схема, которая имеет в сети пусковой конденсатор.

Читайте также  Какую изоленту лучше использовать электрикам?

Данная схема имеет определенные нюансы:

  1. Пусковая обмоткаи конденсатор включаются на момент старта двигателя.
  2. Дополнительная обмотка работает небольшое время.
  3. Термореле включается в цепь для защиты от перегрева дополнительной обмотки.

При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.

К основным моментам создания цепи питания электродвигателя, можно отнести следующее:

  1. От источника тока, 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
  2. Перед ним есть разветвление, которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
  3. После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
  4. Оба конденсатора идут к двигателю.

Подобным образом можно провести подключение однофазного электродвигателя.

Выбор пускового конденсатора для электродвигателя

пусковые конденсаторы для электродвигателей

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

пусковые конденсаторы

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Обзор моделей

Существует несколько популярных моделей, которые можно встретить в продаже.

Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:

  1. Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
  2. Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
  3. Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.

Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.

Конденсатор для электродвигателя: как выбрать и пользоваться, расчет емкости для пускового и рабочего, подключение и эксплуатация

Многие владельцы довольно часто оказываются в ситуации, когда требуется подключить в гараже или на даче такое устройство, как трехфазный асинхронный двигатель к различному оборудованию, в качестве которого может выступать наждачный или сверлильный станок. При этом возникает проблема, поскольку источник рассчитан на однофазное напряжение. Что же здесь делать? На самом деле эту проблему решить довольно легко путем подключения агрегата по схемам, используемым для конденсаторных. Чтобы реализовать этот замысел, потребуются рабочее и пусковое устройство, часто именуемые как фазосдвигающие.

Выбор ёмкости

Для обеспечения правильной работы электродвигателя нужно рассчитать определённые параметры.

Для рабочего конденсатора

Чтобы подобрать эффективную емкость устройства, необходимо выполнить расчеты по формуле:

  • I1 – номинальный показатель тока статора, для измерения которого применяют специальные клещи;
  • Uсети – напряжение сети с одной фазой, (В).

После выполнения расчетов получится емкость рабочего конденсатора в мкФ.

Возможно для кого-то будет затруднительно рассчитать этот параметр по приведенной выше формуле. Однако в этом случае можно воспользоваться и другой схемой расчета емкости, где не нужно проводить столь сложных операций. Этот метод позволяет достаточно просто определить необходимый параметр на основании только мощности асинхронного двигателя.

Здесь достаточно помнить о том, что 100 Ватт мощности трехфазного агрегата должно соответствовать около 7 мкФ емкости рабочего конденсатора.

При расчётах нужно следить за током, который поступает на фазную обмотку статора в выбранном режиме. Недопустимым считается, если ток имеет большее значение, нежели номинальный показатель.

Для пускового конденсатора

Бывают ситуации, когда электродвигатель приходится включать в условиях большой нагрузки на валу. Тогда одного рабочего конденсатора будет недостаточно, поэтому к нему придется добавить пусковой конденсатор. Особенностью его работы является то, что он будет работать лишь в период пуска аппарата не более 3 секунд, чего используется ключ SA. Когда же ротор выйдет на уровень номинальной частоты вращения, прибор отключается.

Если по недосмотру владелец оставил включенными пусковые устройства, это приведет к образованию существенного перекоса по токам в фазах. В таких ситуациях высока вероятность перегрева двигателя. При определении емкости следует исходить из того, что величина этого параметра должна в 2,5-3 раза превосходить емкость рабочего конденсатора. Действуя подобным образом, можно добиться того, что пусковой момент двигателя достигает номинального показателя, в результате чего во время его запуска не возникает осложнений.

Для создания требуемой емкости конденсаторы могут подключаться по параллельной и последовательной схеме. Следует иметь в виду эксплуатация трехфазных агрегатов мощностью не более 1 кВт допускается в том случае, если их подключение осуществляется к однофазной сети при наличии исправного устройства. Причем здесь можно обойтись и без пускового конденсатора.

После расчетов нужно определить, какой тип конденсатора может использоваться для выбранной схемы

Наилучший вариант, когда применяется аналогичный тип для обоих конденсаторов. Обычно работу трехфазного двигателя обеспечивают бумажные пусковые конденсаторы, облаченные в стальной герметичный корпус типа МПГО, МБГП, КБП или МБГО.

Большая часть этих устройств выполнена в виде прямоугольника. Если взглянуть на корпус, то там приведены их характеристики:

  • Емкость (мкФ);
  • Рабочее напряжение (В).

Применение электролитических устройств

Используя бумажные пусковые конденсаторы, нужно помнить о следующем негативном моменте: они имеют довольно большие размеры, обеспечивая при этом небольшую емкость. По этой причине для эффективной работы трехфазного двигателя небольшой мощности приходится использовать достаточно большое количество конденсаторов. При желании бумажные можно заменить и электролитическими. В этом случае их необходимо подключать несколько иным способом, где обязательно должны присутствовать дополнительные элементы, представленные диодами и резисторами.

Однако специалисты не советуют использовать электролитические пусковые конденсаторы. Это связано с наличием у них серьезного недостатка, который проявляется в следующем: если диод не справится со своей задачей, на устройство начнет продаваться переменный ток, а это уже чревато его нагревом и последующим взрывом.

Другая причина состоит в том, что сегодня на рынке можно встретить улучшенные с металлизированным покрытием полипропиленовые пусковые модели переменного тока типа СВВ.

Чаще всего они рассчитаны на работу с напряжением 400-450 В. Как раз им и следует отдать предпочтение, учитывая, что они неоднократно показывали себя с хорошей стороны.

Напряжение

Рассматривая различные типы пусковых выпрямителей трехфазного двигателя, подключаемого к однофазной сети, следует принимать во внимание и такой параметр, как рабочее напряжение.

Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый. Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов.

В то же время не стоит рассматривать модели, в которых напряжение имеет меньший показатель, нежели напряжение сети. Устройства с такими характеристиками не смогут эффективно выполнять свои функции и довольно скоро выйдут из строя.

Чтобы свести к не ошибиться при выборе рабочего напряжения , следует придерживаться следующей схемы расчета: итоговый параметр должен соответствовать произведению фактического напряжения сети и коэффициента 1,15, при этом расчетное значение должно составлять не менее 300 В.

В том случае, если выбираются бумажные выпрямители для работы в сети переменного напряжения, то их рабочее напряжение нужно разделить на 1,5-2. Поэтому рабочее напряжение для бумажного конденсатора, для которого производитель указал напряжение в 180 В, в условиях работы в сети переменного тока составит 90-120 В.

Дабы понять, как на практике реализуется идея подключение трехфазного электродвигателя к однофазной сети, выполним эксперимент с использованием агрегата АОЛ 22-4 мощностью 400 (Вт) . Главная задача, которая должна быть решена – запуск двигателя от однофазной сети с напряжением 220 В.

Используемый электродвигатель имеет следующие характеристики:

  • показатель мощности вчера– 400 кВт;
  • напряжение сети 220В переменного напряжения;
  • Ток, все характеристики которого были определены при помощи электроизмерительных клещей в трехфазном режиме работы– 1,9А;
  • Схема подключения обмоток «звезда».

Помня о том, что используемый электродвигатель имеет небольшую мощность, при подключении его к однофазной сети можно купить лишь рабочий конденсатор.

Расчет емкости рабочего выпрямителя:

Пользуясь приведенными формулами, возьмем за среднее значение емкости рабочего выпрямителя показатель 25 мкФ. Здесь была выбрана несколько большая емкость, равная 10 мкФ. Так мы попытаемся выяснить, как влияет такое изменение на пуск аппарата.

Теперь нам необходимо купить выпрямители, в качестве последних будут использоваться конденсаторы типа МБГО. Далее на основе подготовленных выпрямителей выполняется сборка требуемой емкости.

В процессе работы следует помнить, что каждый такой выпрямитель имеет емкость 10 мкФ.

Если взять два конденсатора и соединить их друг с другом по параллельной схеме, то итоговая емкость составит 20 мкФ. При этом показатель рабочего напряжения будет равен 160В. Для достижения требуемого уровня в 320 В необходимо взять эти два выпрямитель и подключить их еще к такой же паре, конденсаторов, соединенных параллельно, но уже применив последовательную схему. В итоге суммарная емкость составит 10 мкФ. Когда батарея рабочих конденсаторов будет готова, подключаем ее к двигателю. Далее останется только запустить его в однофазной сети.

Читайте также  ГЕНЕРАТОР ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ

В процессе проведенного эксперимента с подключением двигателя к однофазной сети работа потребовала меньше времени и сил. Используя подобный агрегат с выбранной батареей выпрямителей, следует учесть, что его полезная мощность будет находиться на уровне до 70-80 % от номинальной мощности, при этом частота вращения ротора будет соответствовать номинальному показателю.

Важно: если используемый двигатель рассчитан на сеть напряжением 380/220 В, то при подключении к сети следует использовать схему «треугольник».

Обращайте внимание на содержание бирки: бывает так, что там приведено изображение звезды с напряжением 380 В. В этом случае правильную работу двигателя в сети можно обеспечить, выполнив следующие условия. Сперва придется «распотрошить» общую звезду, после чего соединить с клеммником 6 концов. Искать общую точку следует в лобовой части двигателя.

Видео: подключение однофазного двигателя в однофазную сеть

Решение об использовании пускового конденсатора следует принимать исходя из конкретных условий, чаще всего оказывается достаточно рабочего. Однако если используемый двигатель подвергается повышенной нагрузке, то эксплуатацию рекомендуется остановить. В этом случае необходимо правильно определить необходимую емкость устройства, чтобы обеспечить эффективную работу агрегата.

Чем отличается пусковой конденсатор от рабочего?

Конденсаторы подразделяются на различные типы в зависимости от своего назначения, материала и других факторов. Чтобы запустить и затем поддерживать работу цепи нужны два вида конденсаторов рабочий и пусковой конденсатор. Первый тип нужен выполняет кратковременную задача, а именно он проводит запуск электродвигателя. Когда двигатель выходит на необходимую мощность, вся дальнейшая работа проходит без этой радиодетали пусковой конденсатор должен отключаться.

Такое условие свойственно не для всех электродвигателей, а лишь для тех, у кого в цепи стоит такой конденсатор и режим работы предусматривает такой способ запуститься в работу. В статье рассмотрены все различия между пусковым и рабочим конденсатором, а также приведены видео и статья, посвященные выбранной теме.

Пусковые конденсаторы

Особенности трёхфазного двигателя

Асинхронные электродвигатели с тремя обмотками на статоре преобладают в различных отраслях сельского хозяйства. Их применяют для привода устройств вентиляции, уборки навоза, приготовления кормов, подачи воды. Популярность таких моторов обусловлена рядом преимуществ:

  • простота строения;
  • надёжность в работе;
  • при подключении в нормальном режиме не используются дорогие и дефицитные устройства;
  • количество технических обслуживаний невелико.

схема подключения

Подключить трехфазный двигатель на 220 можно пытаться, зная различия схем соединения обмоток. Количество фаз, на которое рассчитан двигатель, можно определить по числу зажимов в его клеммной коробке: у трёхфазного в ней будет 6 выводов, а у однофазного два или четыре. Обмотки мотора с тремя фазами соединяются по установленной схеме, называемой «звездой» или «треугольником». Каждая из них имеет свои преимущества и недостатки. При соединении в звезду концы обмоток соединены. В клеммной коробке эта схема соединения будет отображена использованием двух перемычек между зажимами с обозначениями «С6», «С4», «С5».

Если же обмотки двигателя соединяются в треугольник, то к каждому концу присоединяется начало. В клеммной коробке будут использованы три перемычки, которые будут соединять зажимы «С1» и «С6», «С2» и «С4», «С3» и «С5». Трехфазные двигатели рассчитаны на рабочее напряжение в 380 В. Но не всегда в быту имеется такое напряжение. Поэтому возникает проблема: как осуществить подключение электродвигателя через конденсатор к бытовой сети?

Наиболее приемлемый и общедоступный способ — применение фазосдвигающего конденсатора. В таком режиме может быть достигнута 50–60%-ная мощность от номинальной. Отметим, что не все асинхронные двигатели одинаково хорошо будут работать при включении в однофазную сеть. Наиболее приспособлены к данным условиям двигатели, имеющие короткозамкнутый ротор, выполненный в виде двойной клетки.

Оптимальная работа электродвигателя достигается лишь в случае, если емкость конденсатора будет изменяться по мере увеличения скорости вращения. Практически очень сложно осуществить это требование. В связи с этим принято двухступенчатое управление двигателем. Пуск осуществляется с помощью двух конденсаторов (пускового — Сп и рабочего — Ср). Затем, при наборе нужной скорости вращения, пусковой нужно отключить. Основная функция его состоит в увеличении пускового момента.

схема подключения

Расчет конденсатора для электродвигателя можно произвести таким образом. Расчетная формула имеет вид: Ср = К*(Iн/U). Здесь приняты следующие обозначения:

  • сила тока (номинальная) — Iн (А);
  • напряжение (номинальное) — U (В);

К — безразмерный коэффициент.

Значение К определяется тем, как включен двигатель. К = 2800, когда двигатель включен по схеме «звезда». Если же он включен по схеме «треугольник», то значение К = 4800.

Конденсаторы для запуска электродвигателя рекомендуется выбрать из бумажных, в частности:

  • бумажных, герметичных, в металлическом корпусе, маркировка КБГ-МН
  • бумажных, термостойких, условное обозначение БГТ;
  • металлобумажных, частотных, МБГЧ.

В случае необходимости поменять направление вращения двигателя достаточно поменять местами провода, подключенные к зажимам конденсатора. Запуск электродвигателя с помощью конденсатора лучше осуществлять по схеме «треугольник». В этом случае можно добиться максимальной выходной мощности (до 70 %). В качестве примера рассмотрим двигатель АО2. Его номинальная мощность 2,2 кВт, частота вращения — 1420 об/мин. Для его запуска в режиме холостого хода (или при наличии нагрузки) потребуются 2 конденсатора: первый емкостью 230 мкФ (рабочий) и второй емкостью 150 мкФ (пусковой).

Пусковые конденсаторы большой емкости

Основные параметры конденсаторов

Чем отличается пусковой конденсатор от рабочего?

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.). Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF). Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В – 10000 часов;
  • 450 В – 5000 часов;
  • 500 В – 1000 часов.

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках. В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх. Щупы включить в гнёзда с обозначением Сх. Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

Проверка пускового и рабочего конденсаторов

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

Сравнительные характеристики

Проверка пускового и рабочего конденсаторов

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы. Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные. Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды.

Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Чем отличается пусковой конденсатор от рабочего?

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс “+” и минус “-” и их можно подключить как угодно. Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения – термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Расчёт необходимой ёмкости

Расчёт необходимой ёмкостиРасчёт необходимой ёмкости

Выбирая конденсатор, необходимо предупредить ситуацию, при которой фазный ток превысит своё номинальное значение. Поэтому к подсчётам необходимо подойти очень тщательно — неправильные результаты могут привести не только к поломке конденсатора, но и перегоранию обмоток двигателя. На практике для пуска моторов небольшой мощности пользуются упрощённым подбором исходя из соображений, что для каждых 100 Вт мощности двигателя необходимо 7 мкФ ёмкости при соединении в треугольник. При подключении обмотки в звезду это значение уменьшается вдвое. Если в однофазную сеть присоединяют мотор на три фазы с мощностью 1 квт, то необходим конденсатор зарядом 70—72 мкФ при соединении обмоток треугольником, и 36 мкФ в случае подключения звездой.

Расчёт необходимого значения ёмкости для работы производится по формулам.

При схеме соединения звездой:

Если обмотки образуют треугольник:

I — номинальный ток двигателя. Если по каким-либо причинам его значение неизвестно, для расчёта необходимо воспользоваться формулой:

При этом U = 220 В при соединении звездой, U = 380в — треугольником.

Р — мощность, измеряемая в ваттах.

При пуске двигателя со значительной нагрузкой на валу параллельно с рабочей ёмкостью необходимо включить пусковую.

Её значение рассчитывают по формуле:

Пусковая ёмкость должна превышать значение рабочей в 2,5 — 3 раза.

Чем отличается пусковой конденсатор от рабочего?

Очень часто при включении мотора с тремя обмотками в однофазную сеть используются конденсаторы типа КГБ-МН или БГТ (термостойкие). Они выполнены из бумаги. Металлический корпус полностью герметичен. Имеет прямоугольный вид. Необходимо учитывать, что допустимые значения напряжения и ёмкости, обозначенные на приборе, указаны для постоянного тока. Поэтому при работе на переменном токе необходимо уменьшать показатели напряжения конденсатора в 2 раза.

Расчёт необходимой ёмкости

Заключение

Более подробно о пусковых конденсаторах можно прочитав статью о Основные отличия пусковых конденсаторов. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: