Методики испытания трансформаторного масла

Испытание трансформаторного масла

Трансформаторное масло играет роль изоляционной и охлаждающей среды. В выключателях оно служит для гашения дуги и для изоляции.

Правильная эксплуатация изоляционного масла обеспечивает надежную и безаварийную работу электрооборудования.

Свойства трансформаторного масла

В процессе эксплуатации отдельные качественные показатели и свойства трансформаторного масла меняются оно стареет. Старение трансформаторного масла в процессе эксплуатации определяется по изменению кислотного числа, по количеству образующегося в нем шлама, и по реакции водной вытяжки.

Кислотным числом трансформаторного масла называют количество миллиграмм калия необходимого для нейтрализации всех свободных кислых соединений, входящих в состав одного грамма масла. По величине кислотного числа судят о степени старения траснформаторного масла и о возможности оставления его в работе. При определенной степени окисления трансформаторного масла, изоляция обмоток трансформатора ухудшает свои качества и может разрушиться.

Шлам выпадает из масла в результате его старения и отлагается в каналах охлаждения, изоляции, на сердечниках трансформаторов и другого электрооборудования, ухудшая условия охлаждения данного оборудования. При этом изоляция этого электрооборудования быстрее стареет и разрушается, что может привести к авариям, например витковым замыканиям в обмотках трансформаторов.

Реакция водной вытяжки служит для определения присутствия растворенных в воде кислот и щелочей с помощью специальных индикаторов, которые способны менять цвет от наличия в трансформаторном масле кислот и щелочей. Эти кислоты, способствуя быстрому окислению трансформаторного масла, могут вызвать металла и изоляции в электрооборудовании или в аппарате.

Физические свойства трансформаторного масла

Физические свойства трансформаторного масла имеют важное значение для надежной работы электрооборудования. Изменение этих свойств говорит о неисправности оборудования и старения масла.

Удельный вес трансформаторного масла должен быть меньше удельного веса льда. Так как лед, который может образоваться зимой в отключенном трансформаторе, опустится на дно, и тем самым обеспечивая циркуляцию масла.

Температура вспышки трансформаторного масла должна быть относительно высокой для того, чтобы при значительных перегрузках трансформатора оно не могло воспламениться. В процессе работы температура вспышки масла в трансформаторах может резко понижаться в результате разложения масла под действием местных нагревов.

Электрические свойства трансформаторного масла

Диэлектрическая прочность трансформаторного масла обеспечивает надежную работу электрического оборудования. Диэлектрическая прочность масла со временем понижается. Для определения электрической прочности трансформаторное масло периодически испытывают на пробой с помощью маслопробойного аппарата.

Аппарат подключается к сети переменного напряжения величиной 220 В. Вторичное напряжение аппарата равно 60 кВ. С пределом регулирования от 0 до 60 кВ.

Для испытания на пробой трансформаторное масло заливают в фарфоровый сосуд, в котором смонтированы два дисковых электрода толщиной 8 мм и диаметров 25 мм. расстояние между дисками устанавливается 2,5 мм. сосуд наполняют маслом и устанавливают в маслопробойник. Маслу дают отстояться в течении 20 мин, чтобы из него вышел воздух. Далее плавно поднимают напряжение со скоростью 1 – 2 кВ в секунду до наступления пробоя.

При испытании трансформаторного масла необходимо сделать 6 пробоев с интервалом 10 минут. Первый пробой считают пробным и его результат не учитывается. За величину пробойного напряжения принимается среднеарифметическое из пяти последующих пробоев.

При неудовлетворительных результатах испытаний берется повторная проба, после чего дается окончательное заключение.

Испытание трансформаторного масла

Свежее трансформаторное масло перед заливкой вновь вводимых трансформаторов, прибывающих без масла, обязательно должно пройти испытания на содержание механических примесей, содержание взвешенного угля, на прозрачность, на общую стабильность против окисления, кроме этого, должен быть определены тангенс угла диэлектрических потерь, температура вспышки, температура застывания, кинематическая вязкость, натровая проба в баллах, кислотное число и реакция водной вытяжки.

Из трансформаторов, прибывших без масла, до начала монтажа необходимо произвести отбор пробы остатков трансформаторного масла (со дна).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Испытание трансформаторного масла

Трансформаторное масло для изоляции и охлаждения некоторых видов электроэнергетического оборудования. В качестве примера можно привести масляные высоковольтные выключатели, реакторное оборудование и силовые трансформаторы. Для нормальной работы перечисленных устройств должны регулярно проводиться испытания трансформаторного масла. С чем связана такая необходимость, и какова методика испытаний Вы узнаете, ознакомившись с данной статьей.

Зачем нужно проводить испытания трансформаторного масла?

Масло обладает определенными электрическими и физическими свойствами, которые со временем изменяются и перестают отвечать действующим нормам. То есть, можно сказать, что оно стареет. Давайте рассмотрим, какие при этом могут происходить изменения нормы показателей.

Заметим, что в сухих трансформаторах также наблюдается процесс старения твердой изоляции.

Изменение физических свойств

От физических характеристик эксплуатационного масла напрямую зависит, насколько надежно будет функционировать электрическое оборудование. Поэтому в процессе проверки уделяется пристальное внимание следующим свойствам трансформаторного масла:

  • Допустимое значение плотности (удельного веса). Важно, чтобы этот параметр уступал льду. Это связано с тем, что при образовании в неработающей установке льда (в зимний период), он формировался на дне бака, не создавая препятствий для свободной циркуляции в системе масляного охлаждения. Нормой считается плотность в пределах 860-880 кг/м 3 при температуре равной 20,0°С. Соответственно законам физики, показатели удельного веса изменяются в зависимости от температуры (при нагреве – увеличиваются, а охлаждении — уменьшаются).
  • Критический нагрев масла до температуры воспламенения (температура вспышки). Этот параметр должен быть достаточно высоким, чтобы исключить возгорание, когда трансформатор, работая в режиме перегрузки, подвергается сильному нагреву. Нормой считается температура в пределах 125-135°С. Со временем, под воздействием частых перегревов, масло начинает разлагаться, что приводит к резкому снижению показателя температуры вспышки.
  • Показатель окисления (кислотное число) трансформаторного жидкого диэлектрика. Поскольку наличие кислот приводит к повреждению изоляции обмоток трансформатора, то важно определить их наличие. Кислотное число отображает количество (в мг.) гидроксида калия (KOH), необходимого для удаления следов кислоты в 1-м грамме продукта.

Изменение электрических свойств

По сути, трансформаторное масло является диэлектрической средой, соответственно, показателями качества для него будут изоляционные характеристики. К таковым относятся:

  • Показатель диэлектрической прочности. Это характеристика пробивного напряжения, нормы которой устанавливаются в зависимости от класса электрооборудования. Допустимое соотношение между рабочим и пробивным напряжением показано ниже.

Таблица 1. Соотношение рабочего и пробивного напряжения.

  • Диэлектрические потери в изоляции, происходящие вследствие рассеивания электроэнергии в изоляционных материалах, под воздействием электрополя.
  • Наличие воды и механических примесей (указываются в процентном содержании).

Электрические показатели, как и физические, со временем изменяются, что требует их проверки на соответствие нормам РД 34.45-51.300-97.

Порядок и методика проведения испытаний

Существует установленный порядок для процедуры испытаний трансформаторного масла, он включает в себя три этапа:

  1. Получение образцов. Для отбора пробы необходимо руководствоваться соответствующими методическими указаниями.
  2. Проведение испытаний, согласно выбранной методике. Это может быть полный или частичный физико-химический анализ или определение электрической прочности (проходимость электрического тока) в условиях определенной температуры.
  3. Подведение итогов анализа. В протоколе испытаний указываются результаты проводимых тестов, и составляется заключение о соответствии испытуемого масла принятым нормам.

Разобравшись с порядком проведения испытаний, рассмотрим основные методики.

Сокращенный химический анализ

Данная методика испытаний включает в себя:

Автоматический прибор ТВЗ-ЛАБ-11 фиксации температуры вспышки

  • Проверка качества по внешнему виду взятой пробы. В ходе этого экспресс анализа можно определить наличие воды и шлама.
  • Определение пробивных напряжений. Данный тест мы рассмотрим отдельно.
  • Определение кислотного числа. Данный тест производится в спецлаборатории, техническую сторону анализа мы приводить не будем, поскольку она интересна только специалистам. Что отображает данный показатель, было рассказано выше.
  • Определение температуры вспышки. В современных спецлабораториях для этой цели используют автоматические приборы, позволяющие зафиксировать температуру воспламенения масла в большом диапазоне. В частности, представленный на рисунке ниже прибор способен измерить температуру воспламенения в пределах от 40,0°С до 370°С.
    Автоматический прибор ТВЗ-ЛАБ-11 фиксации температуры вспышки
  • Анализ, получивший название «реакция водной вытяжки». По данной методике можно определить наличие щелочи и кислоты во взятой пробе. Масло считается отвечающим норме, если реакция показала нейтральный результат.

Полный химический анализ

Изоляционное масло подвергается полным испытаниям в тех случаях, когда даже одна из характеристик становиться критичной или замечен процесс интенсивного старения. Благодаря полному физико-химическому анализу можно с большой точностью определить допустимый срок технической эксплуатации, установить вероятную причину старения и рекомендовать процедуру восстановления. При полном испытании проводятся все тесты сокращенного анализа и дополнительно проверяются следующие характеристики:

  • Проверка допустимого уровня диэлектрических потерь, повышение которых говорит о наличии продуктов старения и/или загрязнении выше допустимой нормы. Результатом данного теста является показатель тангенса угла диэлектрических потерь.
  • Определение количества примесей, образующихся в процессе эксплуатации и снижающих показатели диэлектрической прочности. Данная характеристика может быть получена различными способами, из которых самые простые визуальный осмотр и гравиметрический способ. Но, к сожалению, эти два метода не позволяют произвести оценку гранулометрического состава примесей, а именно от этого показателя зависит характеристика электрической прочности.

В состав современных лабораторий входят автоматические ультразвуковые установки, позволяющие с большой точностью определить количественное содержание примесей.

  • Определение количества влаги, содержащейся в пробе. На основании этого показателя можно определить изоляционные свойства тестируемого продукта и получить информацию о допустимом сроке эксплуатации. По наличию влаги и ее количеству можно установить факт разгерметизации бака трансформатора и его частую работу в перегруженном режиме. Изображение автоматического прибора-анализатора, позволяющего установить количественное содержание влаги, приведено ниже.
    Измеритель содержания влаги Aquameter KFM 3000Измеритель содержания влаги Aquameter KFM 3000
  • Анализ, позволяющий определить состав растворенных в пробе газов (газосодержание). Этот показатель отражается на диэлектрической плотности трансформаторных масел. Ниже представлен мобильный аппарат-газоанализатор, позволяющий установить состав абсорбции.
    Переносной газоанализатор трансформаторного масла Transport XПереносной газоанализатор трансформаторного масла Transport X
  • Проба на наличие антиокислительных присадок. Результат анализа позволяет установить необходимость замены или регенерации испытуемого масла.
  • Определение устойчивости к окислению (стабильность диэлектрической смеси). Анализ производится путем обработки воздушной смесью пробы масла (при том допускается добавка специального катализатора). После этого снимаются характеристики после окисления и сравниваются с теми, что были изначально.
Читайте также  Обрешетка под вагонку на потолок своими руками

Определение электрической прочности

Данный показатель можно назвать основным параметром, описывающим изоляционные свойства жидкого диэлектрика. Расчет прочности трансформаторного масла производится по формуле: E = UНП / h, где UНП – величина напряжения пробоя, h – межэлектродный зазор. Результаты с пробы снимаются при помощи специального прибора, например такого, как на рисунке ниже.

Устройство контроля электрической прочности КПН-901

Устройство контроля электрической прочности КПН-901

Характерно, что показатели измерения пробивного напряжения не зависят от проводимости масла, но обе эти характеристики чувствительны к влаго- и газосодержанию, а также наличию технологических примесей. Как только перечисленные показатели выходят за допустимые пределы, наблюдается увеличение проводимости и снижение электрической прочности.

Объем и периодичность испытаний

Согласно действующим нормам масло испытывается в следующих случаях:

  1. В процессе хранения электрических аппаратов. Регулярность испытаний зависит от класса напряжения оборудования. Например, масло в устройствах до 35,0 кВ тестируется раз в полгода, а в оборудовании, рассчитанном на 110,0 кВ и более, испытания проводятся через каждые 4-е месяца. Если заправка производилась свежими трансформаторными маслами, то достаточно проверки электрической прочности, в противном случае выполняют сокращенный химанализ.
  2. Перед запуском в работу. Проба из бака оборудования должна быть взята до включения трансформаторов или других устройств, использующих масло. Объем испытаний указывается производителем электрооборудования.
  3. В процессе эксплуатации масляных выключателей, высоковольтных трансформаторов, специальных аппаратах измерения тока и т.д. Регулярность испытаний зависит от назначения оборудования и класса напряжения. Например, для силовых трансформаторов до 35,0 кВ, проводят испытания со следующей периодичностью:
  • После запуска в работу 5 раз в течение первого месяца, при этом 3 теста должны быть выполнены в первые две недели, оставшиеся в последующие две недели.
  • Далее производятся измерения с периодичностью в 4-е месяца.

Пример протокола испытания с пояснением

Приведем в качестве примера протокол испытаний эксплуатационного трансформаторного масла, с разделением основных информационных полей.

Пример протокола испытаний

Пример протокола испытаний трансформаторного масла

Как проходит испытания трансформаторного масла

Трансформаторное масло применяется в роли изолирующей среды и для охлаждения электрического оборудования. Но для проверки качества и свойств данных материалов должны проводиться их испытания. Рассмотрим особенности процедуры указанного испытания, их методику и характеристики, подлежащие проверке.

Для чего проверяется масло

Цель испытаний трансформаторного масла состоит в проверке его электрических и физических характеристик. В процессе эксплуатации материал подвергается старению, в результате чего состав теряет заданные свойства. Испытания предназначены для проверки соответствия показателей установленным нормам, поскольку от этого зависит безопасная и надёжная эксплуатация оборудования.

испытание

Когда нужно проверять

Периодичность проведения испытаний зависит от мощностных характеристик агрегатов, в которых применяется данный материал. Обычно пробы отбираются один раз в 4 месяца или перед пуском в работу нового оборудования.

Достоверность получаемых результатов зависит от условий, при которых производится проверка. Необходимо исключить проникновение влаги из воздушной среды в материал. Ёмкость с маслом открывают при выравнивании температуры состава с данными показателями воздушной среды.

При проведении проверки после запуска тестирование выполняется 5 раз в течение начальных 30 дней эксплуатации оборудования.

Колба предварительно должна быть очищена от загрязнений. Для большей достоверности и исключения неправильных результатов жидкость отбирается со дна ёмкости оборудования.

Объём испытаний и какие свойства проверяются

В процессе проведения испытаний проверяются основные характеристики материала на соответствие требованиям нормативной документации. Предусмотрена проверка по следующим критериям:

  1. Температуре вспышки – с ростом данного показателя возрастает объём испарений, в результате чего масло становится более вязким, в его составе возрастает удельный процент взрывоопасных газов.
  2. Температуре застывания – обратный показатель отмеченному выше. Его уменьшение затрудняет функционирование маслоперекачивающих насосов, переключающих устройств и прочих элементов масляных систем.
  3. Кислотному числу – показывает уровень содержания в материале едкого калия. Определяется количества миллиграммов данного компонента, необходимого для нейтрализации свободных кислот в 1 г состава. Итоговое значение показателя получают расчётным путём.
  4. Диэлектрической плотности – первоочередной критерий, свидетельствующий о степени загрязнённости состава. Проводится 6 раз с определением среднего показателя.
  5. Тангенсу угла диэлектрических потерь – определяет диэлектрические и изолирующие свойства рабочей жидкости.
  6. Цветовым характеристикам – по ним можно определить свойства состава и его качество.
  7. Присутствию сторонних механических загрязнений – этот критерий взаимосвязан с кислотным числом и показывает степень старения масла, в результате чего оно теряет заданные свойства.
  8. Содержанию влаги и газов – также указывает на степень старения рабочей жидкости.

Кроме перечисленных работ проводятся замеры плотности ареометром, определение наличия серы. Но данные показатели не нормируются.

Как проходит испытание

Испытания проводятся поэтапно, в такой последовательности:

  1. Отбираются образцы – в процессе выполнения данных работ необходимо придерживаться указанных выше требований по влажности и температуре окружающей среды.
  2. Непосредственное проведение испытаний в объёме полного или частичного физико-химического анализа или определения проходимости электрического тока.
  3. Подводятся итоги, со сравнением полученных результатов с нормируемыми показателями.

По результатам проведённых работ составляется соответствующий протокол с указанием следующей информации:

  1. Титула документа, где приводится марка проверяемого материала и нормированные показатели, в соответствии с требованиями государственных стандартов.
  2. Таблицы с перечислением проведённых проверок и их результатов.
  3. Экспертного заключения о состоянии масла и возможности дальнейшего его использования, с отметкой о соответствии состава установленным нормативам.
  4. Наименования лаборатории, проводившей работы, даты составления протокола, печати организации и росписи ответственного работника.

Работы должны проводиться лабораторией, прошедшей соответствующую аккредитацию и располагающей обученным и аттестованным персоналом.

Нормы

Нормируемые показатели должны соответствовать следующим количественным значениям по следующим критериям:

свойства

  • пробивному напряжению, для оборудования, работающего в диапазоне от 60 до 220 кВ – в пределах до 35 кВ, от 20 до 35 кВ – до 25 кВ;
  • наличие механических примесей не допускается;
  • кислотному числу – до 0,25 мг на 1 г состава;
  • стабильности против окислительных процессов при аналогичных единицах измерения – в пределах 0,005 мг;
  • массовой доле осадочных компонентов – должны отсутствовать;
  • кислотному числу окислённого материала – до 0,1 мг;
  • температуре вспышки – до 150°С;
  • тангенсу угла диэлектрических потерь – до 7 процентов;
  • влаго- и газосодержанию – в соответствии с заводскими нормами;
  • натровой пробе – до 0,4 балла;
  • температуре застывания – до -45°С;
  • кинематической вязкости – от 9 до 1300 м³/с, в зависимости от температурных показателей состава.

Если показатели не соответствуют нормативам, использование данного материала грозит пробоем изоляции оборудования и его перегревом, в результате чего трансформатор может выйти из строя.

Рабочая жидкость, не отвечающая установленным критериям, подвергается очистке, в результате которой показатели приводятся в норму, с возможностью дальнейшего использования масла.

Современной промышленностью выпускается множество фильтрующих установок, позволяющих очистить масло, для возможности его последующего применения.

Проведение трансформаторного масла позволяет проверить качество материала и исключить опасность возникновения нештатной ситуации, которая не исключена при несоответствии состава установленным нормируемым показателям.

Видео: испытание масла на пробой

Методики испытания трансформаторного масла

Transformer oils. Specifications

МКС 75.100
ОКП 02 5376 0100

Дата введения 1982-01-01
в части марки ПТ 1985-01-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 24.11.80 N 5525

4. Стандарт соответствует стандарту МЭК, публикация 296, в части масел класса IIА.

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

6. Ограничение срока действия снято по протоколу N 2-92 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2-93)

7. ИЗДАНИЕ (июнь 2011 г.) с Изменениями N 1, 2, 3, утвержденными в марте 1982 г., марте 1985 г., марте 1989 г. (ИУС 7-82, 6-85, 6-88), Поправкой (ИУС 6-2005)

Настоящий стандарт распространяется на трансформаторные масла сернокислотной и селективной очисток, вырабатываемые из малосернистых нефтей и применяемые для заливки трансформаторов, масляных выключателей и другой высоковольтной аппаратуры в качестве основного электроизоляционного материала.

(Измененная редакция, Изм. N 3).

1. МАРКИ

Устанавливаются следующие марки трансформаторных масел:

ТК — без присадки (изготовляют по специальным заказам для общетехнических целей), применять для заливки трансформаторов не допускается;

Читайте также  Обрезка деревьев и кустарников

Т-750 — с добавлением (0,4±0,1)% антиокислительной присадки 2,6 дитретичный бутилпаракрезол;

Т-1500 — с добавлением не менее 0,4% антиокислительной присадки 2,6 дитретичный бутилпаракрезол;

ПТ — перспективное масло.

(Измененная редакция, Изм. N 1, 3).

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Трансформаторные масла должны изготовляться в соответствии с требованиями настоящего стандарта, из сырья и по технологии, которые применялись при изготовлении образцов масел, прошедших испытания с положительными результатами и допущенных к применению в установленном порядке.

(Измененная редакция, Изм. N 1).

2.2. По физико-химическим показателям трансформаторные масла должны соответствовать требованиям и нормам, указанным в таблице.

Норма для марки

ТК ОКП
02 5376 0101

Т-750 ОКП
02 5376 0104

Т-1500 ОКП
02 5376 0105

1. Вязкость кинематическая, м/с (сСт), не более:

2. Кислотное число, мг KОН на 1 г масла, не более

3. Температура вспышки, определяемая в закрытом тигле, °С, не ниже

4. Содержание водорастворимых кислот и щелочей

5. Содержание механических примесей

6. Температура застывания, °C, не выше

7. Натровая проба, оптическая плотность, не более

По ГОСТ 19296 и п.5.2 настоящего стандарта

8. Прозрачность при 5 °C

По п.5.3 настоящего стандарта

9. Испытание коррозионного воздействия на пластинки из меди марки М1 или М2 по ГОСТ 859

10. Цвет на колориметре ЦНТ, единицы ЦНТ, не более

11. Стабильность против окисления, не более:

По ГОСТ 981 и п.5.4 настоящего стандарта

масса летучих низкомолекулярных кислот, мг KОН на 1 г масла

массовая доля осадка, %

кислотное число окисленного масла, мг КОН на 1 г масла

12. Стабильность ингибированного масла по методу МЭК, не менее:

По публикации N 474, МЭК

индукционный период окисления, ч

13. Тангенс угла диэлектрических потерь, %, не более:

По ГОСТ 6381* и п.5.5 настоящего стандарта

14. Плотность при 20 °C, г/см, не более

______________
* Вероятно ошибка оригинала. Следует читать ГОСТ 6581. — Примечание изготовителя базы данных.

1. Для трансформаторного масла марки ТК, вырабатываемого из эмбенских нефтей и их смеси с анастасьевской нефтью, при испытании на стабильность против окисления по ГОСТ 981 допускается масса летучих низкомолекулярных кислот 0,012 мг КОН на 1 г масла, кислотное число окисленного масла — не более 0,5 мг КОН на 1 г масла.

2. При выработке трансформаторных масел из бакинских парафинистых нефтей допускается применение карбамидной депарафинизации.

3. (Исключен, Изм. N 2).

(Измененная редакция, Изм. N 2, 3, Поправка).

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1. Трансформаторные масла являются малоопасными продуктами и по степени воздействия на организм человека относятся к 4-му классу опасности в соответствии с ГОСТ 12.1.007.

3.2. Трансформаторные масла представляют собой в соответствии с ГОСТ 12.1.044 горючие жидкости с температурой вспышки 135 °C.

3.3. Помещение, в котором производятся работы с маслом, должно быть оборудовано приточно-вытяжной вентиляцией.

3.4. Предельно допустимая концентрация паров углеводородов масел в воздухе рабочей зоны 300 мг/м в соответствии с ГОСТ 12.1.005.

3.5. При работе с трансформаторными маслами должны применяться индивидуальные средства защиты согласно типовым правилам, утвержденным в установленном порядке.

3.6. При загорании масел используют следующие средства пожаротушения: распыленную воду, пену; при объемном тушении — углекислый газ, состав СЖБ, состав 3,5, пар.

Разд.3. (Измененная редакция, Изм. N 3).

4. ПРАВИЛА ПРИЕМКИ

4.1. Трансформаторное масло принимают партиями. Партией считают любое количество масла, изготовленного в ходе технологического процесса, однородного по показателям качества, сопровождаемого одним документом о качестве, содержащим данные по ГОСТ 1510.

(Измененная редакция, Изм. N 3).

4.2. Объем выборок — по ГОСТ 2517.

4.3. При получении неудовлетворительных результатов испытания хотя бы по одному из показателей проводят повторные испытания вновь отобранной пробы из той же выборки.

Испытание трансформаторного масла

Трансформаторное масло применяется в качестве изолирующей среды в силовых и измерительных трансформаторах, маслонаполненных вводах и выключателях.

Условия работы масла в электрооборудовании (нагревании рабочим током, действие горящей дуги, загрязнение частицами твердой волокнистой изоляции, увлажнение от соприкосновения с окружающей средой и т.п.) предъявляют к нему довольно жесткие требования.

Свежее трансформаторное масло перед заливкой в оборудование должно пройти испытание в соответствии с требованиями ПУЭ. Эксплуатационное трансформаторное масло испытывается в соответствии с требованиями ПЭЭП.

Для испытаний пробу трансформаторного масла, прибывшего с завода-изготовителя или находящегося в электрооборудовании, отбирают из нижней части ем кости или бака оборудования, предварительно промыв маслом сливное отверстие. Посуда, в которую отбирают пробу масла, должна быть чистой и хорошо высушенной.

Минимальное пробивное напряжение масла определяют на аппаратах типа АМИ-80 или АИИ-70М в маслопробойном сосуде со стандартным разрядником, который со стоит из двух плоских латунных электродов толщиной 8 мм с закругленными краями и диаметром 25 мм с расстоянием между электродами 2,5 мм.

Перед испытанием банку или бутылку с пробой масла несколько раз медленно переворачивают вверх дном, добиваясь, чтобы в масле не было пузырьков воздуха. Фарфоровый сосуд, в котором испытывают масло, вместе с электродами три раза ополаскивают маслом их пробы. Масло льют на стенки сосуда и электроды тонкой струей, чтобы не образовались воздушные пузырьки. После каждого ополаскивания масло пол ностью сливают.

Уровень залитого масла в сосуде должен быть на 15 мм выше верхнего края электрода. Защитному маслу в сосуд необходимо отстояться 15-20 мин. для удаления воздушных пузырьков. Повышение напряжения до пробоя производится плавно со скоростью 1-2 кВ/с. После пробоя, который отмечается искрой между электродами, напряжение снижают до нуля и вновь увеличивают до следующего пробоя. Всего производится шесть пробоев с интервалами между ними 5-10 мин. После каждого пробоя из промежутка между электродами стеклянными или металлическими чистыми стержнями помешиванием удаляют обуглероженные частицы масла. Затем жидкости дают отстояться в течение 10 мин.

Напряжение, при котором происходит первый пробой, во внимание не принимается. Пробивное напряжение трансформаторного масла определяется как среднее арифметическое значение из пяти последующих пробоев.

Нормы приемо-сдаточных испытаний.

Объем приемо-сдаточных испытаний трансформаторного масла.

В соответствии с требованиями ПУЭ трансформаторное масло на месте монтажа электрооборудования испытывается в следующем объеме:

1. Анализ масла перед заливкой в оборудование.

2. Анализ масла перед включением оборудования.

3. Испытание масла из аппаратов на стабильность при его смешивании.

Анализ масла перед заливкой в оборудование.

Каждая партия поступившего с завода трансформаторного масла перед заливкой в оборудование должна подвергнуться однократным испытаниям по всем показателям, приведенным в табл. 2.14, кроме п.3. Значения показателей полученных при испытаниях, должны быть не хуже приведенных в табл. 2.14.

Масла, изготовленные по техническим условиям, не указанным в табл. 2.14, должны подвергаться испытаниям по тем же показателям, но нормы испытаний следует принимать в соответствии с техническими условиями на эти масла.

Анализ масла перед включением оборудования.

Масло, вновь залитое в оборудование, перед его включением под напряжение после монтажа должно быть подвергнуто сохраненному анализу. В сокращенный анализ масла входят: определение минимального пробивного напряжения, качественное опре деление наличия механических примесей и взвешенного угля, определение кислотного числа, выяснение реакции водной вытяжки или количественное определение водорастворимых кислот и установление температуры вспышки. Нормы испытаний представлены в пп. 1-6 табл. 2.14, а для оборудования 110 кВ, кроме того, в п. 12 табл. 2.14.

Испытание масла из аппаратов на стабильность при его смешивании.

При заливке в электрооборудование свежих кондиционных масел разных марок смесь проверяется на стабильность в пропорциях смешения, причем стабильность смеси должна быть не хуже стабильности одного из смешиваемых масел, обладающего мень шей стабильности.

Проведение периодических проверок, измерений и трансформаторного масла, находящегося в эксплуатации

В процессе эксплуатации качество трансформаторного масла должно соответствовать нормам, указанным в табл. 2.21.

Объем и периодичность испытаний эксплуатационного масла зависит от конкретного типа оборудования или аппарата.

Для силовых трансформаторов, автотрансформаторов и масляных реакторов трансформаторное масло испытывается в объеме и сроки, согласно нормативов.

Для масляных выключателей трансформаторное масло испытывается в объеме и сроки, согласно нормативов.

Для измерительных трансформаторов трансформаторное масло испытывается в объеме и сроки, согласно нормативов.

Для маслонаполненных вводов трансформаторное масло испытывается в объеме и сроки, согласно нормативов.

Испытания трансформаторного масла: нормы и методики

испытания трансформаторного масла

Трансформаторы являются одной из главных составляющих комплекса оборудования многих энергетических (электростанций, подстанций, преобразовательных устройств) или промышленных предприятий. Для того чтобы избежать выхода из строя оборудования, нужно своевременно проводить испытания трансформаторного масла.

А точнее, производится проверка его качества. Периодический контроль трансформаторного масла является одной из составляющих технологического обслуживания промышленной техники на предприятиях. Основные характеристики трансформаторного масла, его чистота и полезные свойства определяют работоспособность трансформаторов.

Способность масла к сохранению первоначальных свойств в работающей технике на протяжении эксплуатации называется стабильностью трансформаторного масла. Если силовая техника не имеет дефектов и работает без сбоев, то характеристики нового масла практически не изменяются. Свежее трансформаторное масло имеет светлый цвет и определенные соответствует определенным нормативам, которые определяют его диэлектрические и физико-химические свойства. В процессе эксплуатации стабильность трансформаторного масла значительно снижается, появляются заметные изменения характеристик и масло темнеет.

Читайте также  Ленточнопильный станок своими руками

Негативные показатели масла обнаруживают увеличенное кислотное число и повышенную зольность, наличие низкомолекулярных кислот. В загрязненном масле формируется осадок, который вместе с накопленными кислотными веществами разрушает бумажную изоляцию трансформатора и вступает в реакцию с металлами внутренних деталей.

Испытания являются определением начала процесса старения трансформаторного масла.

Такого рода техника в зависимости от вида и заложенных способностей может работать в самых разнообразных условиях и нагрузках. Исходя из того, что трансформаторы остаются эффективным источником преобразования энергии, очень важно сохранять надежность и продолжительность их эксплуатационного периода.

Причины поломок оборудования

Однако, даже при постоянном надзоре и проверках не удается избежать непредвиденных или, наоборот, плановых поломок и повреждений.

80 % всех известных причин отказа силовой техники спровоцированы загрязнением и окислением трансформаторного масла, то есть жидкой изоляции. Рассмотрим некоторые из этих причин в совокупности с предпосылками поломок, то есть влиянием устаревшего масла.

Наиболее распространенным вариантом повреждения трансформаторов общего назначения является повреждение высоковольтных маслонаполненных вводов, в которые попадает влага. Масло увлажняется, ухудшаются его изоляционные характеристики, в результате чего в масле могут возникнуть частичные разряды и возникает пробой.

Другим видом поломок трансформаторов является нарушение в контактной системе избирателя. Они возникают от неправильной регулировки контактов, впоследствии образования на контактах окисленной пленки – продуктов старения трансформаторного масла.

К наиболее тяжелым последствиям приводят повреждения твердой изоляции и обмоток трансформаторов. Шлам и другие отложения загрязненного трансформаторного масла остаются на обмотках или изоляции, вызывают ее ослабление с возникновением ползущего разряда и последующий пробой.

И, наконец, стоит обратить внимание на то, что существуют и обратные процессы: повреждение определенных систем связанных с содержанием или подачей масла, влияют на его окисление и работоспособность. К примеру, повреждение маслонасоса приводит к попаданию металлических частиц и других примесей в трансформаторное масло. При нарушении резиновых уплотнений в масло попадает влага, которая является одним из основных катализаторов его старения. Неисправность стрелочного маслоуказателя приводит к недопустимому снижению или превышению уровня масла и проч.

Зачем проводят испытания изоляционного масла?

Для того, чтобы вовремя определить дисфункцию рабочей жидкости и рассчитать вероятность поломки, проводят испытания трансформаторного масла.

Предельно допустимые показатели физико-химических и диэлектрических свойств как вновь заливаемого, так и эксплуатируемого трансформаторного масла ограничены нормами

Отбор проб масла в эксплуатации из баков трансформаторов проводится раз в 1-3 года в зависимости от мощности силового оборудования.

Для того чтобы результаты испытания или анализа масла были достоверными, при отборе нельзя допускать попадания влаги, грязей или других веществ. Кран, по которому масло будут собирать для испытаний в специальную колбу, следует тщательно очистить от пыли и грязи. Необходимо следить за тем, чтобы не допустить резкого изменения температуры колбы, при которых на них конденсируется влага. Открыть сосуд с пробой масла следует только после того, как он принял температуру окружающей среды.

Нормы испытания трансформаторного масла

Испытания проводят по основным показателям трансформаторного масла, указанных в нормативных документах и признанных основными рабочими характеристиками качественной рабочей жидкости.

Трансформаторное масло испытывают на диэлектрическую прочность, цвет, наличие газов, воды, механических примесей, добавок, кислот и щелочей, испытание содержание газа на хроматогрофе и тп.

Температура вспышки

Существенной характеристикой трансформаторного масла является температура вспышки: чем она ниже, тем больше испаряемость. В результате испарений ухудшается состав масла, возрастает его вязкость, увеличивается содержание взрывоопасных газов.

Для того, чтобы определить температуру вспышки трансформаторного масла, его заливают в тигль – закрытый сосуд, и нагревают. Пары, которые образуются в ходе такого испытания, смешиваются с воздухом и вспыхивают при поднесении к этой смеси пламени или же от электрической искры. Зачастую с помощью проверки температуры вспышки и по составу скопившегося газа можно достаточно точно выявить характер внутренних повреждений трансформатора.

Температура застывания

По обратному показателю – температуре застывания – проводят испытания для трансформаторных масел, используемых в оборудовании в условиях низких температур. Снижение температуры застывания ухудшает работу масляных насосов, переключателей и других компонентов силовых систем.

Кислотное число трансформаторного масла

Это количество едкого калия, выраженного в миллиграммах и которое необходимо, чтобы нейтрализовать свободные кислоты в 1 г масла. Данный показатель частично характеризует уровень старения масла.

А вот его стабильность проверяется с помощью испытаний искусственного окисления трансформаторного масла. Конечные данные – процентное содержание осадка и кислотное число – рассчитываются, в данном случае, только для свежего масла.

Диэлектрическая прочность

Как один из главных показателей стабильности трансформаторного масла, измеряется в первую очередь. Ее вычисляют по пробивному напряжению в стандартном разряднике из двух электродов диаметром до 25 мм. Электроды располагают в фарфоровом сосуде на расстоянии 2,5 мм друг от друга и постепенно наливают в сосуд масло.

Испытание проводится 6 раз, причем результаты первого в среднеарифметический результат не всчитывают. Если испытания проводятся для свежего трансформаторного масла, тогда уровень пробивного напряжение должен быть не менее 30 кВ. В некоторых случаях масла с таким напряжением может использоваться в трансформаторах без особых приготовлений.

Понижение числа пробивного напряжения характеризует наличие загрязнений в масле, например, газов, влаги, волокон или других механических примесей.

Тангенс угла диэлектрических потерь

Подобным образом проводят вычисления тангенса угла диэлектрических потерь. Способности масла нейтрализовать энергию, не допускать электрических пробоев и охлаждать внутренние детали характеризуют уровень его качества и класс чистоты, или наоборот, степень окисления масла. В целом увеличение тангенса угла диэлектрических потерь означает ухудшение диэлектрических и изоляционных свойства рабочей жидкости.

Цвет трансформаторного масла со светло-желтого на мутный меняется под воздействием температур, загрязнителей, действия электрического поля. Цвет масла сам по себе не говорит о конкретных изменениях его свойств и характеристик. Однако же может служить для ориентировочной оценки его качества на международном рынке.

Наличие механических примесей

И показатель кислотного числа трансформаторного масла – характеристики взаимосвязанные. Нерастворенные вещества, которые накапливаюся в масле в виде осадка или в нерастворенном состоянии – волокна, пыль, продукты растворения красок, лаком, металлов из конструкции трансформатора, уголь и шлам – ухудшают изоляционные свойства масла, способствуя его окислению. Чем большее количество вредных частиц в масле, тем быстрее происходит его старение.

Кислотное число выражается в миллиграммах как раз и характеризует степень старения трансформаторного масла, вызванного содержанием вредных элементов. Оно характеризует количество едкого калия, необходимого для нейтрализации свободных кислот в 1 г трансформаторного масла. Норма кислотного числа не превышает 0,25 мг КОН на 1 г масла, а предельно допустимое количество примесей составляет 515 г/т.

Влаго- и газосодержание

В трансформаторном масле подвергается тщательному анализу в связи с тем, что вода и воздух являются одними из главных катализаторов процесса старения рабочих жидкостей.

Влагосодержание измеряется по количеству водорода при взаимодействии трансформаторного масла с гидридом кальция за установленное время. Уровень газосодержания вычисляется с помощью абсорбиометра или хроматографа.

Остальные испытания

Трансформаторного масла носят вспомогательный характер. Их показатели не нормируются. Плотность масла определяется с помощью ареометра. Статистическая и динамическая вязкость измеряется с помощью вискозиметров Энглера и Пинкевича. Содержание серы рассчитывают только в процессе отработки технологии производства трансформаторного масла.

Таким образом, преимущества проведения испытаний и обследований трансформаторного масла перед запуском оборудования или в процессе его регулярного технического обслуживания, проявляются в возможностях вычисления его главных продуктивных качеств, условий эксплуатации и предотвращении серьезных загрязнений. В результате выполнения норм контроля качества и чистоты, предприниматель гарантирует надежность работы промышленного силового оборудования и использование качественного продукта за вложенные финансы.

На основании проведенных испытаний трансформаторного масла дается оценка его работоспособности, подготавливаются необходимые процедуры очистки и восстановления, а также составляются комплексные отчеты общего эксплуатационного состояния трансформаторного оборудования.

Оборудование для очистки и регенерации трансформаторного масла

Если в результате испытаний стало очевидно, что изоляционное масло силового оборудования пришло в непригодность, то для его очистки и регенерации нужно использовать специальное оборудование. Различные виды установок для очистки и регенерации отработанных трансформаторных масел отличаются количеством фильтрационных систем, производительностью, количеством потребляемой энергией и количеством обрабатываемой за раз рабочей жидкости. Чем больше развивается рынок технологий, тем более совершенными и доступными становится очистительное масляное оборудование.

очистительные установки для трансформаторного масла

Мобильность и универсальность использования установок для фильтрации трансформаторных масел давно стали нормой на международном рынке и стоит ожидать новых внедрений в этой сфере.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: