ЭЛЕКТРИЧЕСКАЯ СХЕМА БЛОКА ПИТАНИЯ

Импульсные блоки питания — устройство и ремонт

Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Но для ремонта импульсных блоков питания нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

Принципиальная схема импульсного блока питания

Работа импульсного блока питания

Первичная цепь импульсного блока питания

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем стоит фильтр CLC. Катушка, кстати, используется для подавления синфазных помех. Вслед за фильтром располагается выпрямитель на основе диодного моста и электролитического конденсатора. Для защиты от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливают варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если выйдет из строя диодный мост. Диод не даст пройти отрицательному напряжению в основную схему. Потому, что откроется и сгорит предохранитель.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения. А также для первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи следующие. Коммутационный транзистор Q1 и с ШИМ (широтно импульсный модулятор) контроллер. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное. Оно преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

И еще — для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Работа вторичной цепи импульсного блока питания

Во выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр. Он состоит из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Если выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод. Он включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается. Пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Неисправности импульсных блоков питания, ремонт

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду. Но не всегда. Иногда внешне исправный конденсатор оказывается плохим. Например, по внутреннему сопротивлению.
  4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
  5. Если не работает ШИМ регулятор, то меняем его.
  6. Замыкание, а также обрыв обмоток трансформатора. Шансы на починку минимальны.
  7. Неисправность оптопары — крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.

Примеры ремонта импульсных блоков питания

Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

ремонт импульсного блока питания в блоке защиты и управления

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Например, в одном блоке питания оказались неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.

На втором не работал ШИМ контроллер.

На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление у них большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке оказалось в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. Работоспособность блока питания восстановилась только после замены этого конденсатора. Потому что ШИМ заработал.

Ремонт компьютерных блоков питания

Пример ремонта блока питания компьютера. В ремонт поступил дорогой блок питания на 800 Вт. При его включении выбивало защитный автомат.

ремонт компьютерного блока питания

Выяснилось, что короткое замыкание вызывал сгоревший транзистор в первичной цепи питания. Цена ремонта составила 3000 руб.

Имеет смысл чинить только качественные дорогие компьютерные блоки питания. Потому что ремонт БП может оказаться дороже нового.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.

Но самое важное — есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Стоимость ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Например, в одном сложном блоке питания вылетело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

Принципиальные Схемы Atx

Аналогичная ситуация возникает в условиях аварийной эксплуатации блока питания, связанной с короткими замыканиями в нагрузке, контроль которых осуществляется специальной схемой контроля. Вывод 1 ИМС является входом схемы сравнения.


Сигнал проходит через резистор R23, транзистор Q 6 и операционный усилитель IC 2.

Как только вы приступите к ремонту убедитесь, что все контакты и радио компоненты визуально в порядке, силовые шнуры не повреждены, предохранитель и выключатель исправен, коротких замыканий на землю нет.
Ремонт блока питания бп atx дежурка

Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления; Входные электролиты обозначены красным тестирование ключевых силовых транзисторов.

Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ; Проверка выходных диодных сборок диоды шоттки при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность — КЗ; Отмеченные на плате диодные сборки проверка выходных конденсаторов электролитического типа.

Резистор R67 — нагрузка делителя. Структурная схема блока питания компьютера Схема блока питания компьютера кликните для увеличения.

При этом через диод D5, подключенный к этой обмотке, заряжается конденсатор С7, и происходит намагничивание трансформатора. Проверить наличие на контакте PS-ON потенциала корпуса нуля , исправность микросхемы U4 и элементов ее обвязки.

Отсутствие вращения вентилятора. Последний отсекает пульсации и состоит из группы дросселя и конденсаторов.

Обзор и ремонт блока питания FSP ATX 350PAF

Отзывы о сервисе

Мануалы Справочник Программы Радиосамоделки Медтехника Библиотека Схема блока питания для компьютера Здесь вы можете скачать довольно приличный сборник принципиальных схем компьютерных блоков питания АТХ и уже устаревших источников АТ, узнаете как проверить компьютерный источник, получите дельные советы по его ремонту и возможные варианты модернизации в нужные радиолюбительские конструкции. Сергеев Б. Фильтр состоит из группы конденсаторов и дросселя. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций.

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. С задержкой в 0,

Конструктивные особенности Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. Чаще всего при поломке компьютерного блока питания, в системнике отсутствуют признаки жизни, не горит светодиодная индикация, нет звуковых сигналов, не крутятся вентиляторы.

Но если осуществлять оперативное управление этими параметрами, например с помощью контроллера с функцией стабилизатора, то показанная выше структурная схема будет вполне пригодной для использования в компьютерной техники.

Нагрузка источника питания — схема терморегулирования. Сергеев Б.

Транзисторы Q 1 и Q 2 открываются противофазно на равные временные интервалы t1 и t2 рис. В источниках питания для конструктива АТХ в дальнейшем — источник изменен разъем для подключения питания к системной плате.

При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор методика такая же, как при проверке диодов. Структурная схема блока питания компьютера Схема блока питания компьютера кликните для увеличения.
Блок питания АТХ пособие по ремонту часть1

Структурная схема

Установка компьютерного блока питания в корпус системного блока Для этого засовываете его в верхнюю часть системного блока, и затем фиксируете тремя или четырьмя винтами к тыловой панели системного блока.

К ним относятся двухзвенный заградительный фильтр сетевых помех, низкочастотный высоковольтный выпрямитель с фильтром, основной и вспомогательный импульсные преобразователи, высокочастотные выпрямители, монитор выходных напряжений, элементы защиты и охлаждения. В случае их наличия заменить микросхему U4.

Мюллер С. Резисторы R2, R3 — элементы цепи разряда конденсаторов С1, С2 при выключении питания.

Положительная обратная связь обеспечивается дополнительной обмоткой, расположенной на магнитопроводе трансформатора ТЗ. Временные диаграммы коммутационных процессов переключения силовых транзисторов Q 1 и Q 2 Управление базовыми цепями транзисторов Q1 и Q 2 осуществляется через ускоряющие цепочки D 3, R 7, С9, R 5 и D 4, R 8, С10, R 6, которые форсируют прямые и обратные токи баз Q 1 и Q 2 на этапах их включения и выключения. Стабилизация этого напряжения осуществляется микросхемами U1, U2.

Как правило, их неисправность может быть обнаружена путем визуального осмотра. Уровень выходных напряжений источника устанавливается потенциометром VR 2. ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности КМ. Неисправности компьютерного блока питания и способы их диагностирования и ремонта Приступая к поиску неисправности рекомендуется ознакомится со схемой компьютерного БП.


В момент подачи питания начинает развиваться блокинг-процесс, и через рабочую обмотку трансформатора Т1 начинает протекать ток. Кучеров Д. Методика проверки инструкция После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов потемнение, изменившийся цвет, нарушение целостности. Структурная схема источника рис. В аварийном режиме функционирования увеличивается падение напряжения на резисторе R

Читайте также  Схема расключения двухклавишного выключателя

Согласование маломощных выходных сигналов логических элементов УУ с входами силовых транзисторов выполняется усилителями импульсов УИ через трансформатор Т2, который обеспечивает гальваническую развязку. На некоторых моделях возможно встретить сразу два вентилятора. С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. В источнике также имеются цепи защиты от короткого замыкания в каналах выходного напряжения. Напряжение -5 В формируется с помощью диодов D27,

Питание ВПр осуществляекч от сетевого выпрями теля через резистор R 9. Возвратные диоды D 1 и D 2 ограничивают напряжения на коллекторах транзисторов Q 1 и Q 2, обеспечивая их безопасную paботу в инверсном режиме при возврате реактивной энергии, накопленной в нагрузке и трансформаторе, в систему электроснабжения через открытый транзистор.
Лабораторный БП из компьютерного блока питания ATX

Блок питания ATX-400W — принципиальная схема

Конденсаторы С1, С2 образуют фильтр низкочастотной сети.

Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании. Такая упрощенная схема БП с использованием контроллера широтно-импульсной модуляции показана на следующем рисунке.

Диоды D13, D14 предназначены для рассеивания магнитной энергии, накопленной полуобмотками трансформатора Т2. В случае исправности элементов обвязки заменить U4. Магнитный поток, создаваемый этим током, наводит ЭДС в обмотке положительной обратной связи.

При этом в трансформаторе Т1 накапливается больше электромагнитной энергии, отдаваемой в нагрузку, вследствие чего выходное напряжение повышается до номинального значения. Структурная схема источника рис. Конструктивные особенности Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. Значительно реже происходит отказ вентилятора, но это также приводит к печальным последствиям: от перегрева выгорают дроссели L1, L 2.

Во вторичных обмотках блока питания компьютера, кроме диодных сборок на радиаторах задействованы дроссели. Принципиальные схемы блоков питания ATX. Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.

Этой величины достаточно для запирания транзистора Q6. Резистор R47 и конденсатор С29 — элементы частотной коррекции усилителя.

Распиновка основного коннектора БП

Проверить исправность цепи стабилизации U1, U2, неисправный элемент заменяется. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Выходной сигнал инвертора подается через токовый датчик Т4 на первичную обмотку силового трансформатора Т1. На неинвертирующий вход усилителя ошибки 1 выв. При протекании тока через первичную обмотку ТЗ происходит процесс накопления энергии трансформатором, передача этой энергии во вторичные цепи источника питания и заряд конденсаторов С1, С2.

Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста; Дисковый термистор обозначен красным тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. Обзор схем источников питания Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь.
Как работает ATX

Ремонт блока питания компьютера своими руками

Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.

Структурная схема

На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.

Устройство импульсного БП ATX

Устройство импульсного БП ATX

Указанные обозначения:

  • А – блок сетевого фильтра;
  • В – выпрямитель низкочастотного типа со сглаживающим фильтром;
  • С – каскад вспомогательного преобразователя;
  • D – выпрямитель;
  • E – блок управления;
  • F – ШИМ-контроллер;
  • G – каскад основного преобразователя;
  • H – выпрямитель высокочастотного типа, снабженный сглаживающим фильтром;
  • J – система охлаждения БП (вентилятор);
  • L – блок контроля выходных напряжений;
  • К – защита от перегрузки.
  • +5_SB – дежурный режим питания;
  • P.G. – информационный сигнал, иногда обозначается как PWR_OK (необходим для старта материнской платы);
  • PS_On – сигнал управляющий запуском БП.

Распиновка основного коннектора БП

Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.

Штекеры БП: А – старого образца (20pin), В – нового (24pin)

Штекеры БП: А – старого образца (20pin), В – нового (24pin)

Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.

Нагрузка на БП

Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.

Схема блока нагрузки

Схема блока нагрузки

Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.

Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.

Перечень возможных неисправностей

Перечислим наиболее распространенные неисправности, характерные для импульсных БП системных блоков:

  • перегорает сетевой предохранитель;
  • +5_SB (дежурное напряжение) отсутствует, а также больше или меньше допустимого;
  • напряжения на выходе блока питания (+12 В, +5 В, 3,3 В) не соответствуют норме или отсутствуют;
  • нет сигнала P.G. (PW_OK);
  • БП не включается дистанционно;
  • не вращается вентилятор охлаждения.

Методика проверки (инструкция)

После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.

Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы

Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы

Если таковы не обнаружены, переходим к следующему алгоритму действий:

  • проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;
  • проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;
  • тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение , с большой вероятностью, вывело эти радиодетали из строя;
  • проверка входных конденсаторов электролитического типа начинается с осмотра. Геометрия корпуса этих деталей не должна быть нарушена. После этого измеряется емкость. Нормальным считается, если она не меньше заявленной, а расхождение между двумя конденсаторами в пределах 5%. Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления;
  • тестирование ключевых (силовых) транзисторов. При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор (методика такая же, как при проверке диодов).

Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;

  • Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;
  • проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.

Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.

Видео: правильный ремонт блока питания ATX.
https://www.youtube.com/watch?v=AAMU8R36qyE

Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;

  • проводится измерение сопротивления между выходами и нулем, для +5, +12, -5 и -12 вольт этот показатель должен быть в пределах, от 100 до 250 Ом, а для +3,3 В в диапазоне 5-15 Ом.

Доработка БП

В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:

  • во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
  • диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
  • выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
  • бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
  • если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.
Читайте также  Схемы подключения солнечных батарей загородного дома

Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

Где используются принципиальные электрические схемы и как их читать

Для понимания работы электротехнических и электронных устройств необходим навык чтения электросхем. Наиболее распространены структурные, функциональные и принципиальные электрические схемы.

Принципиальные электрические схемы

Электрическая схема.

Виды принципиальных схем

Модели электрических приборов, аппаратов, оборудования, выполненные при помощи цифровых и буквенных символов, а также графических изображений, предназначенные для понимания принципов работы электрических цепей и физических процессов, протекающих в них, называются принципиальными схемами.

В отличие от монтажных они не содержат данных о расположении деталей на печатных платах. Назначение такого типа чертежей – показать соединения элементов между собой, указать их тип и важные параметры для чтения схемы. При необходимости графические материалы дополняются таблицами, текстовыми сносками, диаграммами.

Техническая документация такого рода делится на 2 вида:

  1. Разнесенная (многолинейная) – по строкам (обозначенным арабскими цифрами) изображаются разные цепи, а в каждой строке последовательно располагаются все элементы одной цепи. Этот способ подходит для сложных электроприборов и устройств автоматики, содержащих большое количество реле и контактных групп в трехфазных системах.
  2. Совмещенная (однолинейная) – более наглядный вид графического изображения электрических связей между элементами цепей. В них на одном чертеже могут быть обозначены первичные цепи со схемами соединений совместно с устройствами управления выключателями, автоматикой, релейной защитой. Такие схемы становятся менее востребованными по мере усложнения конструкций.

Виды принципиальных схем

Виды электрических схем.

Как работает подобная схема

Условные обозначения участников цепи расположены по направлению движения тока (сигнала) – слева направо. Специалист должен обладать предварительными знаниями о назначении и функционировании указанных на схеме электронных и электротехнических деталей и приборов.

Группы соединенных между собой элементов объединены в устройства, решающие разные задачи:

  • блоки питания, выпрямители;
  • стабилизаторы и делители напряжения;
  • усилители разных классов;
  • мультивибраторы, триггеры, блокинг-генераторы.

Схема блока питания

Электрическая схема блока питания

С опытом к человеку приходит умение быстро читать электросхему, «видеть» протекающие по контурам токи, распределение потенциалов, форму, длительность и амплитуду сигналов. Выполняя измерения в нужных местах цепи, мастер может судить об исправности узлов устройства.

Используемые по ГОСТу обозначения

ГОСТом регулируются следующие виды обозначений:

  • поправки и надписи, правила исполнения электросхем, комплектность и виды документов (указаны в ЕСКД (Единая система конструкторской документации 2006-2013 гг.);
  • общие требования к выполнению схем, их типы и виды (ГОСТ 2.701-2008).

Документы определяют УГО – условно-графическое обозначение отдельных деталей, линий их взаимосвязи, функциональных групп и устройств. Большинство изображений выполняются с помощью программного обеспечения, которое можно скачать из сети. Можно воспользоваться онлайн-версиями конструкторов, разработанных с учетом требований стандартов. При необходимости допускается использовать не стандартизированные УГО.

УГО

Условные графические обозначения.

На чертежах (рядом или внутри УГО, в разрыве или по концам линий взаимосвязи, на свободных полях) располагаются текстовые данные, характер которых определяется назначением принципиальных схем.

Правила прочтения схем и работы по ним

Для того чтобы быстро и правильно читать электросхемы, нужно:

  1. Знать условно-графические обозначения элементов: конденсаторов, резисторов, катушек индуктивности, реле, двигателей, выключателей, батарей, ламп и других.
  2. Уметь мысленно разделять сложные цепи на простые, пользоваться дополнительно структурными и функциональными разновидностями схем. Изучать чертежи следует систематизированно, в соответствии с логикой работы устройства. Если на документах имеются ссылки на другие источники, необходимо ознакомиться и с ними.
  3. Изучение работы схемы может потребовать построить диаграммы взаимодействия отдельных участков цепи, отражающих очередность срабатывания телеметрии, автоматики, защиты.

Известные принципиальные схемы

Навыки чтения лучше закреплять на хорошо описанных схемах, ставших уже классическими. Они содержат небольшое количество интегральных элементов.

Радиоприемник “Ишим-003”

Устройство выпускалось с 1984 г. Оно представляет собой приемник частотно- и амплитудно-модулированных радиоволн в коротком, среднем и длинном диапазонах. Получил широкое распространение среди радиолюбителей.

Он выполнен по схеме супергетеродина с двумя каналами (ЧМ и АМ) и преобразователем частоты.

Частотно-модулированный канал выполнен из усилителя ВЧ, преобразователя, УПЧ и частотного детектора. Канал с модуляцией по амплитуде состоит из УВЧ, ПЧ, УПЧ и амплитудного детектора.

По низким частотам усиление производится общим УНЧ. В конструкцию входит электронно-счетная шкала, индикатор настройки и блок питания.

Вега-108 стерео

Аппарат появился в 1979 г. и представляет собой стереофонический электропроигрыватель грампластинок с выходной мощностью 2*10 Вт и частотой звука 63-18000 Гц. Устройство работает не только как усилитель внешних сигналов, но и может производить запись на магнитофон.

Принципиальная схема электрофона состоит из блоков:

  • коммутации;
  • регуляторов;
  • питания;
  • предусилителя;
  • модуля усилителя мощности;
  • акустической системы.

Основной частью элементной базы проигрывателя стали транзисторы: КТ815В, КТ814В, КТ315Г. Блок питания аппарата включает в себя понижающий трансформатор с 5 вторичными обмотками, 2 диодных моста и стабилизатор напряжения, выполненный на транзисторе КТ315В.

Вега-108 стерео

Схема Вега-108 стерео.

В качестве головки звукоснимателя используется прибор Г-602. Предварительный усилитель состоит из 2 каналов на транзисторах КТ3102Д, КТ361Е, КТ315Б. Коммутатор сделан из переключателей и электронной схемы.

В качестве управляющих элементов в регуляторе используются переменные резисторы. С их помощью задаются значения громкости звука, баланса, тембра.

Алмаг-01

Медицинский прибор Алмаг-01 предназначен для лечения кожных заболеваний, ЖКТ, ЛОР-органов. Воздействует на организм импульсным электромагнитным полем.

Схема устройства включает в себя:

  • сетевой шнур;
  • катушки-индукторы (излучатели);
  • кабель для соединения ленты излучателей с блоком управления;
  • бесперебойный блок питания;
  • генератор импульсного тока;
  • блок управления.

Алмаг-01

Схема Алмаг-01.

Об исправности схемы сигнализирует индикатор зеленого цвета. Желтый цвет обозначает, что производится излучение импульсов. Сеанс магнитотерапии длится 22 минуты, после чего прибор автоматически отключается.

Мультиметр DT-832

Универсальный прибор для измерения разных электрических величин (напряжения, сопротивления, силы тока и др.). Основой измерительного прибора является микроконтроллер АЦП ICL1706 или его аналоги.

Устройство включает в себя:

  • аналоговую часть;
  • интегратор;
  • компаратор;
  • жидкокристаллический дисплей;
  • цифровую часть с логикой управления.

Прибор удобен в использовании как в быту, так и на производстве.

Виды электрических схем блока питания компьютера

Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера.

Что это такое

Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.

Напряжение, требуемое для работы комплектующих:

  • +12В;
  • +5В;
  • +3,3В.

Кроме этих заявленных величин существует и дополнительное величины:

  • -12В;
  • -5В.

Блок питания

Фото: блок питания

БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.

Обзор схем источников питания

Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.

Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.

В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:

  • приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
  • наличие универсальных внутренних элементов защиты;
  • удобство использования.

Простой импульсный БП

Принцип работы обычного импульсного БП можно увидеть на фото.

Фото: блок схема работы импульсного

Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания.

Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать.

Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин.

Далее переменное напряжение, генерируемое трансформатором, идет на следующий блок. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций. Фильтр состоит из группы конденсаторов и дросселя.

Видео: Принцип работы ШИМ контроллера БП

АТХ без коррекции коэффициента

Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя.

Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения.

Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере.

Фото: ИП для компьютера с ШИМ-контроллером

ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании.

АТХ с коррекцией коэффициента мощности

В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ).

Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более.

Схема блока питания компьютера 300w

Фото: схема блока питания компьютера 300w

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя.

Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть».

настройка роутера DIR 320 для Билайн Не знаете как настроить роутер?. Читайте статью, настройка роутера DIR 320 для Билайн.

Читайте также  СХЕМА САМОДЕЛЬНОГО РОБОТА

Как попасть в настройки роутера ASUS? Ответ сюда.

На двухканальном ШИМ-контролере

Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП.

Фото: схема БП с использованием двухканального ШИМ-котроллера

В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В.

Схема подключения блока питания компьютера

Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий:

  • установить БП в системный блок. Все эти действия нужно выполнять аккуратно, чтобы не задеть остальные комплектующие;
  • закрепить БП к задней панели системного блока специальными винтами;
  • подсоединить кабели питания ко всем устройствам находящимся в системном блоке (материнская плата, дисковод, видеокарта, винчестер). Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.

Схема подключения питания компьютера PcCar CarPc

фото: схема подключения питания компьютера PcCar CarPc

Конструктивные особенности

Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя.

Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора.

В различных моделях могут быть и другие разъемы:

  • индикатор напряжения;
  • кнопки изменения режима работы вентилятора;
  • переключатель входящего напряжения;
  • USB-порты, встроенные в БП.

Внешний вид БП для ПК

Фото: внешний вид БП для ПК

В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише.

На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов.

Фото: обозначение контактов разъемов БП

Каждый цвет провода подает определенное напряжение:

  • желтый — +12 В;
  • красный — +5 В;
  • оранжевый — +3,3 В;
  • черный – заземление.

У различных производителей могут изменяться значения для этих цветов проводов.

Также есть разъемы для подачи тока комплектующим компьютера.

Специальные разъемы для комплектующих

Фото: специальные разъемы для комплектующих

Параметры и характеристики

БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность.

Мощность – основной показатель

Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих.

Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной.

Импульсный блок питания компьютера (ATX) на з00 Вт

Фото: Импульсный блок питания компьютера (ATX) на з00 Вт

Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах.

В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться.

Рабочие напряжение

При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В.

Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК.

параметры блока питания компьютера

Фото: параметры блока питания компьютера

Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту.

Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке.

Советы по выбору источника

Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК.

Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600.

Super Power 300X

Фото: Super Power 300X

Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке.

настройке модема в роутер ByFlyВам необходимо настроить модем в режиме роутера! Подробнее в настройке модема в роутер ByFly.

Интересует настройка роутера ZYXEL KEENETIC LITE PPPoE? Читайте тут.

Настройка IPTV в роутере DIR 620 от Ростелеком? Читайте в статье.

Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК.

ЭЛЕКТРИЧЕСКАЯ СХЕМА БЛОКА ПИТАНИЯ

При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор.

Схема одного из вариантов такого стабилизатора приведена на рис.1. В нем в качестве силового применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечиваетток до 30 А при температуре корпуса до 100 °С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5. 3 В [1]. Мощность, рассеиваемая транзистором, может достигать 110 Вт.

Stabilizator-napryajeniya-na-mownom-polevom-tranzistore-1

Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (TL431). Ее назначение, устройство и параметры подробно описаны в статье [2]. Работает стабилизатор (рис. 1) следующим образом. При подключении сетевого трансформатора Т1 к сети на его вторичной обмотке появляется переменное напряжение около 13 В (эффективное значение). Оно выпрямляется диодным мостом VD1, и на сглаживающем конденсаторе большой емкости (обычно несколько десятков тысяч микрофарад) выделяется постоянное напряжение около 16 В.

Лабораторный БП на К143ЕНЗ

Лабораторный БП на К143ЕНЗ

Мой рабочий «лабораторный» блок питания служит уже более 20 лет. Неоднократно ремонтируя его после экстремальных нагрузок, я пришел к выводу, что необходима регулируемая токовая защита. Лет 5 назад я разработал схему блока питания на микросхеме К142ЕНЗА, и с тех пор забыл о его ремонте. Предлагаемая схема блока питания (БП) может служить как лабораторным источником напряжения с пределами регулировки напряжения 3. 30 В, так и зарядным устройством с регулировкой тока заряда аккумуляторной батареи (АБ).

Рис.1. Принципиальная схема БП

Стабилизатор на К142ЕН5 — с регулируемым выходным напряжением

Стабилизатор на К142ЕН5 — с регулируемым выходным напряжением

В заметке С. Савина «Вариант включения стабилизатора К142ЕН5», опубликованной в «Радио» 1989, № 12, с, 66, речь шла о том, что если вывод 8 этой микросхемы подключить к общему проводу через стабилитрон, то напряжение на выходе стабилизатора увеличится на напряжение стабилизации включенного стабилитрона. Подобный совет повторил А. Гвоздак в статье «Доработка радиоконструктора «Юниор-1», помещенной в «Радио» № 6, с. 81—83 за 1991 г. Опыт показывает, что подборкой соответствующего стабилитрона можно в необходимой мере повысить выходное напряжение стабилизатора, но оно, как и при традиционном включении стабилизатора К142ВН5, фиксированное. Вместе с тем читатели нашего журнала сообщают, что аналогичный способ включения микросхемных стабилизаторов К142ЕН5 позволяет получить на выходе стабилизатора повышенное регулируемое напряжение. Об этом, в частности, рассказывают в своих письмах радиолюбители А. Чумаков из г. Йошкар-Ола и А. Черкасов из Караганды.

СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯ

СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯ

А. ПОГОРЕЛЬСКИЙ, пос. Пойковский Тюменской обл.

Описываемый блок питания собран из доступных элементов. Он почти не требует налаживания, работает в широком интервале подводимого переменного напряжения, снабжен защитой от перегрузки по току.

Предлагаемый блок питания позволяет получать выходное стабилизированное напряжение от 1 В почти до значения выпрямленного напряжения с вторичной обмотки трансформатора (см. схему). На транзисторе VT1 собран узел сравнения: с движка переменного резистора R3 на базу подается часть образцового напряжения (задается источником образцового напряжения VD5VD6HL1 R1), а на эмиттер — выходное напряжение с делителя R14R15. Сигнал рассогласования поступает на усилитель тока, выполненный на транзисторе VT2, который управляет регулирующим транзистором VT4.

При замыкании на выходе блока питания или чрезмерном токе нагрузки увеличивается падение напряжения на резисторе R8. Транзистор VT3 открывается и шунтирует базовую цепь транзистора VT2, ограничивая тем самым ток нагрузки. Светодиод HL2 сигнализирует о включении защиты от перегрузки потоку.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: