ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи. И проще всего взять за основу компьютерный. Данный лабораторный БП 0-22 В 20 А переделан с небольшой доработкой из АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.

Схема регулируемого лабораторного БП из ATX

Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ из ПК

Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию — соответственно рекомендую допаять, если отсутствует.

ИМПУЛЬСНЫЙ КОМПЬЮТЕРНЫЙ БЛОК ПИТАНИЯ

Выходной дроссель +12 В перемотал. Новый — 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ из АТХ

Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ на 2003

На вывод 4 подал прямое напряжение +5 вольт с "дежурки" (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.

Делаем ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-22

Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.

ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ и МАГНИТОЛА

Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В).

Испытания блока питания

Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт. Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.

Форум по обсуждению материала ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

Теория работы импульсных источников питания и варианты схемотехники.

Куда применить отжившие свой век моторы от винчестеров ПК — подключение такого двигателя и варианты идей.

Как работает литий-ионный аккумулятор и чем он отличается по физико-химическим свойствам от других типов. Занимательная теория.

Мощный лабораторный блок питания

Не так давно приобрёл паяльную станцию. Давно занимаюсь любительской электроникой, и вот настал момент когда точно осознал что пора. До этого пользовался батиным самопальным блоком, совмещавшим лабораторный блок питания и блок питания низковольтного паяльника. И вот встала передо мной проблема: паяльную станцию я ставлю, а старый блок держать ради хилого и не точного блока питания 0-30в 3А или таки купить нечто современное, с защитой по току и цифровыми индикаторами? Поползав по ебею понял что максимум что мне светит это за 7-10 тыс купить Китайский блок с током максимум в 5А. Жаба сказала своё веское «ква», руки зачесались и…

Теперь к сути. Сформировал требования к блоку: минимум 0-30В, при токах минимум 10А, с регулируемой защитой по току, и с точностью регулировки по напряжению 0.1В. И что б стало ещё интереснее — 2 канала, пусть и от общей земли. Установка напряжения должна быть цифровой, т.е. никаких переменных резисторов, только энкодеры. Фиксированные установки напряжения и запоминание — опционально.

Для индикации состояния выхода были выбраны цифровые китайские комбинированные индикаторы на ЖК, с диапазоном до 199В с точностью 0.1В и до 20А с точностью 0.01А. Что меня полностью устроило. А вот что забыл, так это прикупить к ним шунты, т.к. по наивности думал что они будут в комплекте.

Для первичного преобразования напряжения думал использовать обычный трансформатор с отводами через каждые 6В, коммутируемый релюшками с контроллера, а для регулировки выхода простой эмиттерный повторитель. И всё бы ничего, но когда узнал стоимость и габариты такого трансформатора (30В * 10А = 300вт), то понял что надо быть современнее и использовать импульсные блоки питания.

Пробежавшись по предложениям понял что ничего толкового на мои токи нет, а если и есть, то жаба категорически против. В связи с этим пришла мысль попробовать использовать компьютерные блоки питания, коих всегда у любого ITшника предостаточно. Были откопаны блоки по 350Вт, что обещало 22А по +5В ветке и 16А по 12В. Пробежавшись по интернету нашёл много противоречивых мнений по поводу последовательного соединения блоков, и нашёл умную статью на Радиокоте как это сделать правильно. Но перед этим решил рискнуть и таки взять и нахрапом соединить блоки последовательно, дав нагрузку.

… И получилось!
На фото последовательно соединены 3 блока. Де-факто на выходе 35В, 10.6А.

image

Далее возник вопрос: каким контроллером управлять. По идее ATMega328 тут идёт за глаза, но ЦАПы… Посчитав почём обойдётся хотя б 2 ЦАПа на 12 бит и посмотрев характеристики Arduino DUE с ними на борту, а так же сравнив кол-во требуемых ПИНов, понял что проще и дешевле и быстрее будет просто поставить эту ардуину в блок целиком, вместе с платой.

Постепенно на макетках родилась схема. Приведу её в общем виде, только для одного канала:

image

Схема бьётся на несколько функциональных блоков: Набор блоков питания ATX, блок коммутации БП, блок усилителя напряжения ЦАП Arduino, блок усилителя напряжения токового шунта, блок ограничения напряжения по заданному току.

Блок коммутации БП: В зависимости от заданного пользователем напряжения Ардуино выбирает какую ветку задействовать. Выбирается минимальная по напряжению ветка, на минимум +3В большая заданного. 3В остаются на неточности установки напряжения в блоках питания +

1.2В просада напряжения на переходах транзистора + не большой запас. Одновременно задействованный ключ ветки активирует тот или иной блок питания. Например задав 24В надо активировать все 3 блока питания и подключить выход на +5в 3-го в цепочке, что даст на коллекторе выходного транзистора VT1 +29В, тем самым минимизируя выделяемую тепловую мощность транзистора.

Блок усилителя напряжения: Реализован на операционном усилителе OP1. ОУ используется Rail-to-Rail, однополярый, с большим напряжением питания, в моём случае — AD823. Причём выход ЦАП Ардуино имеет смещение нулевой точки = 0.54В. Т.е. если Вы задаёте напряжение выхода = 0, на выходе де-факто будет присутствовать 0.54В. Но нас это не устраивает, т.к. ОУ усиливает с 0, и напряжение тоже хочется регулировать с 0. Поэтому применён подстроечный резистор R1, вычитающий напряжение. А отдельный стабилизатор на -5В, вместо использования -5В ветки блока питания, используется ввиду нестабильности выдаваемого блоком питания напряжения, меняющимся под нагрузкой. Выход же ОУ охвачен обратной связью с выхода VT1, это сделано что б ОУ сам компенсировал изменения напряжения в зависимости от нагрузки на выходе.

Кстати, о AD823 из Китая по Ебею: день промучился, понять не мог, почему схема не работает от 0 на входе. Если больше 1.5В то всё становится нормально, а иначе всё напряжение питания. Уже подумав что сам дурак, нарвался на рассказ как человек вместо AD823 получил с Китая подделку. Тут же поехал в соседний магазин, купил там, поставил и… О чудо — всё сразу заработало как надо. Игра, найди отличия (подделка в кроватке, справа оригинал. Забавно что подделка выглядит лучше):

image

Далее усилитель напряжение токового шунта. Поскольку токовый шунт достаточно мощный, то и падение напряжения на нём мало, особенно на малых токах. Поэтому добавлен OP2, служащий для усиления напряжения падения шунта. Причём от быстродействия этого ОУ зависит скорость срабатывания предохранителя.

Сам предохранитель, а точнее блок ограничения тока, реализован на компараторе OP2. Усиленное напряжение, соответствующее протекаемому току, сравнивается с напряжением, установленным электронным потенциометром и если оно выше — компаратором открывается VT2, и тот сбрасывает напряжение на базе выходного транзистора, по сути выключая выход. В работе это выглядит так:

image

Теперь к тому, почему в качестве шунта у меня дроссель. Всё просто: как я писал раньше — я просто забыл заказать шунты. А когда уже собирал блок и это выявилось, то ждать с Китая показалось долго, а в магазине дорого. Поэтому не долго думая, порылся в распайке старых компьютерных блоков питания и нашёл дроссели, почти точно подошедшие по сопротивлению. Чуть подобрал и поставил. Дополнительно же это даёт защиту: В случае резкого изменения нагрузки, дроссель сглаживает ток на время, достаточное что б успел отработать ограничитель тока. Это даёт отличную защиту от КЗ, но есть и минус — импульсные нагрузки «сводят блок с ума». Впрочем, для меня это оказалось не критично.

В итоге у меня получился вот такой блок питания:
image
Надписи на лицевой части сделаны с помощью ЛУТа. Индикаторы работы блоков питания выведены на 2-х цветный светодиод. Где красный запитан от дежурных +5в и показывают что блок готов к работе. А зелёный от Power_Good, и показывает что блок задействован и исправен. В свою очередь транзисторная развязка обеспечивает гашение красного светодиода и если у блока проблема — потухнет и красный и зелёный:

image

Маленькие экраны показывают заданные параметры, большие — состояние выхода де-факто. Энкодерами вращением устанавливается напряжение, короткое нажатие — вкл/выкл нагрузки, длинное — выбор режима установки напряжения/максимального тока. Ток ограничен 12.5А на канал. Реально в сумме 15 снимается. Впрочем — на той же элементной базе, с заменой блоков питания на нечто 500-т Ваттное, можно снимать и по 20. Не знаю, стоит ли приводить тут код скетча, простыня большая и достаточно глупая, + везде торчат хвосты под недоделанный функционал вроде коррекции выходного напряжения по АЦП обратной связи и регулировки скорости вентилятора.

Напоследок, пара слов. Оказалось что Arduino DUE при включении после длительного простоя может не начать выполнять программу. Т.е. включаем плату, думаем что сейчас начнёт выполняться наша программа, а в ответ тишина, пока не нажмёшь reset. И всё бы ничего, но внутри корпуса reset нажимать несколько затруднительно.
Поискал по форуму, несколько человек столкнулось с такой же проблемой, но решения не нашли. Ждут когда разработчики поправят проблему. Мне ждать было лениво, поэтому пришлось решать проблему самому. А решение нашлось до безобразия примитивное, впаять электролитический конденсатор на 22мкФ в параллель кнопке. В результате, на момент запуска, пока идёт заряд этого конденсатора, имитируется нажатие кнопки reset. Отлично работает, прошиваться не мешает:

image

В заключение:
По-хорошему надо повесить на все радиаторы датчики температуры и регулировать скорость вентилятора в зависимости от температуры, но пока меня устроила и платка регулятора скорости вентилятора из какого-то FSPшного блока питания.

Ещё хотелось бы через АЦП обратную связь с блоком коммутации на случай залипания релюшки, а так же обратную связь по выходу, дабы компенсировать температурный дрейф подстроечных резисторов (в пределах 0.1в на больших напряжениях бывают отклонения).

Читайте также  4 грамотных схемы подключения однофазного УЗО

А вот кнопки памяти и фиксированные настройки по опыту использования кажутся чем-то не нужным.

Регулируемый мощный импульсный БП на 60 В 40 А

Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности. Схема на базе линейного регулятора при мощности более 2 кВт была бы невозможна в использовании. По этой причине была выбрана топология прямого преобразователя с двумя ключами, то есть полумостовая схема. Используются IGBT-транзисторы, а роль контроллера возложена на микросхему UC3845.

Схема принципиальная ИБП на 2 кВт

Регулируемый мощный импульсный БП на 60 В 40 А

Сетевое напряжение сначала проходит через фильтр помех, а затем выпрямляется и фильтруется с помощью конденсаторов C4. Для уменьшения пускового тока был последовательно подключен переключатель с Re1 и R2. Катушка реле и вентилятора (обычный, от блока питания компьютера) питаются от 12 В, получаемых путем понижения напряжения 17 В от вспомогательного источника. Резистор R1 должен быть выбран как так что напряжение на упомянутой катушке и вентиляторе составляет 12 В. Вспомогательный источник питания был построен на основе м/с TNY267. Резистор R27 реализует защиту от пониженного напряжения этого источника питания — он не запустится при напряжении ниже пика 220 В.

Регулируемый мощный импульсный БП на 60 В 40 А

Контроллер UC3845 имеет сигнал 50 кГц на выходе и максимальную скважность 47%. Он питается от стабилитрона, который снижает напряжение питания на 5,6 В (с выходом 11,4 В), а также сдвигает пороги UVLO с 7,9 В (ниже) и 8,5 В (вверху) до соответственно 13,5 и 14,1 В. Следовательно, источник питания начнет работать при напряжении 14,1 В, и не будет ниже 13,5 В, благодаря чему защита IGBT была получена от работы без насыщения. Первоначально это было невозможно, потому что пороги UC3845 были слишком низкими.

Регулируемый мощный импульсный БП на 60 В 40 А

Эта схема управляет MOSFET T2, который, в свою очередь, питает управляющий трансформатор Tr2. В результате были получены гальваническая развязка и плавающий контроль. Этот трансформатор, через системы формирования с T3 и T4, управляет IGBT T5 и T6 затворами. Эти транзисторы переключают выпрямленное сетевое напряжение (325 В), питая силовой трансформатор Tr1.

Регулируемый мощный импульсный БП на 60 В 40 А

Напряжение от вторичной обмотки этого трансформатора затем выпрямляется с использованием выпрямителя, подключенного в транзитной системе, и сглаживается дросселем L1 и конденсаторами C17. Обратная связь по напряжению подается с выхода на вывод 2 UC3845. Напряжение можно выставить с помощью потенциометра P1. Гальваническая развязка обратной связи не требуется, поскольку контроллер был подключен к вторичной стороне напряжения и изолирован от сети. Обратная связь по току была реализована с использованием трансформатора тока Tr3 и выведена на выход 3 UC3845. Порог ограничения тока можно установить с помощью P2.

Регулируемый мощный импульсный БП на 60 В 40 А

Транзисторы T5, T6, диоды D5, D5′, D6, D6′, D7, D7′ и диодный мост обязательно должны быть размещены на радиаторе. Диоды D7, конденсаторы C15 и защитные цепи R22 + D8 + C14 должны быть как можно ближе к IGBT. Светодиод 1 указывает, что устройство включено, светодиод 2 — режим ограничения тока или ошибка. Он будет светиться, когда схема не находится в режиме стабилизации напряжения. В состоянии стабилизации на выходе 1 UC3845 составляет 2,5 В, в остальных случаях около 6 В. LED сигнализация может быть убрана.

Регулируемый мощный импульсный БП на 60 В 40 А

Катушки импульсного БП

Выходной трансформатор Tr1 использован от старого источника питания. Коэффициент трансформации находится в диапазоне от 3:2 до 4:3, а его сердечник — ферритовый, без зазора. Если кто-то хочет сам его намотать, используйте сердечник, похожий на сварочный аппарат инвертора или около 6,4 см2 (допустимый диапазон 6-8 см2). Первичная обмотка должна состоять из 20 витков, намотанных 20 проводами диаметром 0,5 мм, а на вторичную обмотку — 14 витков 28 проводами одинакового диаметра. Медные полоски также могут быть использованы. К сожалению, использование одного толстого провода невозможно из-за скин-эффекта.

Регулируемый мощный импульсный БП на 60 В 40 А

Управляющий трансформатор Tr2 имеет три обмотки по 16 витков. Они намотаны одновременно (в трех направлениях) тремя скрученными изолированными проводами. Сердечником является EI (может быть EE) без зазора, взятый из блока питания ATX. Этот сердечник имеет поперечное сечение центральной части примерно 80..120 мм2.

Регулируемый мощный импульсный БП на 60 В 40 А

Трансформатор тока Tr3 состоит из 1 катушки и 68 витков на тороидальном сердечнике. Вообще размер и количество оборотов не являются критическими. Но для другого коэффициента значение R15 должно быть скорректировано.

Регулируемый мощный импульсный БП на 60 В 40 А

Трансформатор вспомогательного источника питания Tr4 был намотан на ферритовый сердечник EE с зазором и диаметром поперечного сечения основы около 16-25 мм2. Он взят от вспомогательного трансформатора инвертора вышеупомянутого источника питания ATX. Направление включения обмоток всех трансформаторов (отмечены точками) должно быть правильным.

Регулируемый мощный импульсный БП на 60 В 40 А

Индуктор извлеченный из микроволновой печи можно использовать в качестве дросселя сетевого фильтра. Выходной дроссель L1, как и трансформатор, также от готового ИБП. Он состоит из двух параллельных дросселей 54 мкГн на порошковых сердечниках, и результирующая индуктивность составляет 27 мкГн. Каждый дроссель намотан двумя проводами 1,7 мм.

Регулируемый мощный импульсный БП на 60 В 40 А

L1 находится на минусовой стороне, так что катоды диодов могут быть прикреплены к радиатору без изоляции. Максимальный ток источника питания составляет около 2500 Вт, а КПД при полной нагрузке превышает 90%.

Замена деталей ИБП

Здесь использовались транзисторы IGBT типа STGW30NC60W. Они могут быть заменены на IRG4PC40W, IRG4PC50W, IRG4PC50U, STGW30NC60WD или аналогичные с соответствующей мощностью и скоростью работы. Выходные диоды могут быть любого быстрого типа с достаточным рабочим током. Для верхних диодов (D5) средний ток не превышает 20 А, для нижних диодов (D6) — 40 А. Таким образом, верхние диоды могут быть выбраны на половину тока нижних. Верхними могут быть два HFA25PB60 / DSEI30-06A или один DSEI60-06A / STTH6010W / HFA50PA60C. Нижние — два DSEI60-06A / STTH6010W / HFA50PA60C или четыре HFA25PB60 / DSEI30-06A.

Диодный радиатор должен быть рассчитан на мощность рассеивания 60 Вт. Общая мощность тепловыделения на IGBT может достигать 50 Вт. Максимальные потери тепла в мостике составляют около 25 Вт.

Схема подачи электропитания напоминает ту, которая часто используется в сварочных аппаратах. Переключатель S1 обеспечивает аварийное отключение источника питания, поскольку не рекомендуется часто отключать источник питания с помощью переключателя питания (особенно при работе в качестве лабораторного).

Регулируемый мощный импульсный БП на 60 В 40 А

Резистивная искусственная нагрузка была применена для тестирования блока питания. Этот обогреватель 220 В 2000 Вт от котла был переделан на мощность 60 В 2000 Вт.

Регулируемый мощный импульсный БП на 60 В 40 А

Потребляемая мощность в выключенном состоянии составляет всего около 1 Вт. Выключатель S1 можно не ставить. Источник питания также может быть построен как источник постоянного напряжения. В этом случае было бы хорошо оптимизировать параметры трансформатора Tr1 для максимальной эффективности.

Внимание: конструкция подобного импульсного источника питания не предназначена для начинающих, поскольку большая часть его схемы подключена к сети 220 В. При небрежной конструкции на выходе может появиться сетевое напряжение! Также необходимо использовать подходящий шнур питания. Конденсаторы внутри устройства могут оставаться заряженными даже после выключения его от розетки!

Лучшие лабораторные блоки питания с АлиЭкспресс

Лабораторный блок (источник) питания — прибор, позволяющий преобразовывать исходное напряжение или ток в необходимое пользователю по одному или нескольким каналам. Устройство широко применяются в мастерских по ремонту компьютеров и телефонов, бытовой техники, на предприятиях, работающих с радиоэлектронной аппаратурой и т. п.

Мы подготовили рейтинг наиболее покупаемых лабораторных блоков питания, которые можно использовать для решения бытовых задач в повседневной жизни.

Как выбрать прибор

В отличие от первичных источников питания, предназначенных для перевода неэлектрической энергии в электроэнергию (например, солнечная батарея), лабораторный источник питания относится к вторичным, позволяющим преобразовать электроэнергию с целью обеспечения требуемых параметров (блок питания ПК, трансформатор, стабилизатор напряжения).

Лабораторный БП может быть линейным или импульсным. В основе приборов первого типа — трансформатор, работающий на низких частотах. Он понижает стандартное напряжение из электросети (220 В) до нескольких десятков вольт при сохранении частоты в 50 Гц. После этого диодный мост выпрямляет и сглаживает напряжение конденсаторами, выполняется окончательное снижение вольтажа стабилизатором до необходимого значения.

Линейный блок питания также называют регулируемым, поскольку он позволяет получать постоянный результат напряжения на выходе вне зависимости от изменений параметров при работе с переменным током. Это полезная функция для восстановления работоспособности аккумуляторов портативных устройств при нахождении в разряженном состоянии в течение длительного времени, а также для зарядки мобильных гаджетов.

Импульсный БП функционирует по принципу заряда импульсами тока сглаживающих конденсаторов. Главные достоинства такого типа приборов по сравнению с линейными — небольшой вес и КПД, превышающий 80 % за счет поступления в конденсаторы точного количества требуемой для работы БП энергии.

Важный параметр при выборе эффективного БП — диапазон напряжения и тока на выходе прибора. Устройства с автоограничением выходных параметров эффективнее приборов с постоянным диапазоном ввиду отсутствия ограничений по предельной мощности, вырабатываемой блоком питания.

Лабораторные БП могут содержать от 1 до 3 каналов. Большинство из них — одноканальные. Два или три канала применяются в специальных приборах, использующихся для компоновки схем с несколькими питающими напряжениями. Электроизоляция позволяет сделать независимыми ток и напряжение любого канала по отношению к электросети и прочим каналам. Это позволяет менять «плюс» на «минус» или соединять каналы последовательно.

В лабораторном источнике питания должны присутствовать защитные функции, позволяющие сохранить работоспособность прибора и предохраняющие пользователя от удара током. К ним относятся: защита от перегрузки по напряжению, току и мощности; предохранение от перегрева.

Наконец, большинство из БП среднего и премиального ценового диапазона поддерживают программный контроль наряду с ручным, а особо продвинутые модели управляются посредством компьютерных интерфейсов USB, LAN и IEEE-488.2. Это позволяет повысить комфорт при взаимодействии с прибором и единовременно отображать все параметры на мониторе ПК.

① Wanptek серия 3010 (KPS3010 / NPS3010 / GPS3010 / DPS3010 / WPS3010 / APS3010) цифровой лабораторный настольный источник питания

Блок питания оснащен светодиодным дисплеем для отображения силы тока, мощности и напряжения, имеет функцию автопереключения постоянного тока и давления. Выходное напряжение и ток регулируются пользователем в диапазоне от 0 до 60 В и от 0 до 10 А соответственно.

Устройство оснащено вентилятором, включающимся при нагреве до 50 градусов, USB-портом для зарядки гаджетов, имеет функции защиты от перегрузки по току (OCP) и перенапряжения (OVP).

Достоинства:

  • высокая точность как по напряжению, так и по току;
  • хорошее качество сборки;
  • удобное управление;
  • модели DPS3010/WPS3010/APS3010 идут с USB-портом с поддержкой QC.

Недостатки:

  • в серии много моделей, есть модели с выводом только трех цифр (разрядность индикатора) — этого бывает недостаточно для комфортной работы, лучше покупать модели с отображением на дисплее более трех цифр;
  • присутствуют импульсные помехи.

В работе

④ Регулируемый лабораторный блок питания GVDA SPS-H305 / SPS-H605 / SPS-H3010

Выходное напряжение — от 0 до 30-60 В, входное – 110 В при частотах 5 и 60 Гц, 220 В при частотах 5 и 50 Гц. Стабилизатор в источнике питания позволяет регулировать напряжение с точностью до 0.05 % +1 мВ, мощность – до 0.05 % + 1мВт, силу тока до 0.1 % + 10 мА. При полной нагрузке эффективность лабораторного БП превышает 80 %, диапазон рабочих температур — от минус 10 до плюс 40 градусов Цельсия.

Достоинства:

  • неплохая точность – погрешность есть, но приемлемая;
  • аккуратная сборка;
  • четырёхразрядный четкий экран;
  • USB-порт в наличии, но без протоколов быстрой зарядки и отображения нагрузки;
  • сменный предохранитель с быстрым доступом.

Недостатки:

  • присутствует небольшой писк под высокой нагрузкой;
  • болты с круглой шляпкой, а не потайные — на функционал не влияют, но снижают эстетику внешнего вида.

⑤ Понижающий мини источник питания постоянного тока FNIRSI DC6006L

Мини-источник питания оснащен вентилятором, включающимся автоматически при превышении температуры в 40 градусов Цельсия и мощности в 100 Вт. Значения, отображаемые на ЖК-дисплее, вращаются в трех плоскостях для удобной работы — под углами 90, 180 или 270 градусов. Устройством можно удаленно управлять посредством ПК с помощью специальной утилиты.

Читайте также  СХЕМА РЕГУЛЯТОРА МОЩНОСТИ

Достоинства:

  • аккуратно сделан, небольшого размера;
  • в наличии программное обеспечение для компьютера;
  • присутствует порт Type-C PD для подключения питания.

Недостатки:

  • сложное управление, низкая скорость работы энкодера;
  • в режиме СС высокий уровень пульсаций (40–150 мВ).

⑥ Лабораторный блок питания Longwei LW-K3010D

Комплектация посылки включает непосредственно лабораторный блок питания, силовой кабель и 6 дополнительных с зажимом типа «крокодил», 1 тестовый провод. Корпус устройства выполнен из пластика, в наличии «умный» вентилятор для эффективного охлаждения при высокой нагрузке.

Достоинства:

  • реальные характеристики соответствуют заявленным;
  • блок узкий – экономит место на рабочем столе;
  • греется в целом не сильно, кулер охлаждения включается только при сильном нагреве;
  • четырёхзначные индикаторы напряжения и тока;
  • наличие регулировочных резисторов.

Недостатки:

  • присутствует постепенное снижение выходного напряжения в процессе работы блока.

⑦ Регулируемый цифровой блок питания GOPHERT NPS-1600 / NPS-1601 / NPS-1602

Значения пиковой пульсации и шума регулируемого БП не превышают 10 мВ по напряжению и 10 мА по току. При постоянном напряжении регулирование нагрузки не превышает 30 мВ, линейное — в пределах 5 мВ, точность набора в диапазоне менее 0.3 % + 10 мВ. Прибор имеет узкую конструкцию, что позволяет экономить место на рабочем столе. Источник питания оснащен четырехзначным дисплеем для показа текущих параметров входного и выходного тока и вольтажа.

Достоинства:

  • добротное качество сборки и комплектующих;
  • есть пассивная система охлаждения;
  • компактный и легкий: 120х50х180 мм, вес – 800 гр;
  • достаточно точный для домашнего использования.

Недостатки:

  • при выборе регистра энкодером недолго хранит в памяти выбранное значение;
  • шнур питания лучше заменить.

Замеры

⑨ Источник питания YIHUA 3005D импульсный

Прибор оснащен тремя клавишами для программирования параметров напряжения и тока, светодиодным дисплеем, функцией быстрого переключения с режима работы 4.2 В/2 А на 19 В/5 А. Линейный источник питания применяется для тестирования волн частотой от 30 до 1800 МГц, что позволяет использовать прибор при починке ноутбуков, ПК и смартфонов.

Достоинства:

  • хорошая точность;
  • можно сохранять 3 настройки напряжения и тока на отдельные кнопки;
  • кнопка питания расположена на лицевой панели;
  • есть дополнительная розетка на корпусе.

Недостатки:

  • наличие детектора ЭМ-поля, но его работоспособность непонятна;
  • кабели желательно заменить.

Внешний вид

⑩ Лабораторный источник питания KORAD KA3005D

Лабораторный БП позволяет запрограммировать 4 пользовательских параметра и имеет светодиодный дисплей. Пользователю доступна произвольная настройка защитных функций, включая OCP и OVP, функция блокировки клавиш для предохранения от случайного нажатия.

Лабораторный импульсный блок питания. Часть 1. ЛБП на микросхемах серии 38xx: TL3842, UCC3804

Лабораторный импульсный блок питания. Часть 1. ЛБП на микросхемах серии 38xx: TL3842, UCC3804

Схемы ЛБП, опубликованных в свое время в различных технических журналах, довольно громоздки, несмотря на неплохие параметры (много из этих схем мне довелось изготавливать). Думаю, что понятие «лабораторный» не должно ассоциироваться с большим объемом и неподъемной массой.

Я считаю основными характеристиками ЛБП:
1. Надежность.
2. Мобильность (для меня это важно) а, значит, малый вес и габариты.
3. Минимальные потери на регулирующем силовом элементе.
4. Высокие регулировочные и нагрузочные характеристики.
5. Доступность и дешевизна комплектующих.
6. Минимальная сложность схемы.
7. Простота в изготовлении и настройке.
7. Хорошая повторяемость и, конечно, — малые временные затраты на сборку девайса.

Понятно, что малые габариты и вес, высокий КПД и приличная мощность, — все это можно совместить лишь в импульсном блоке питания. Именно в этом направлении пытался продвинуться и я, собрав и испытав несколько незамысловатых схем импульсных ЛБП, о которых речь пойдет ниже. Все схемы собраны с применением элементной базы от старых компьютерных БП и электронных трансформаторов «Ташибра» и им подобных.

Как и говорилось выше, упор при конструировании данного ЛБП, как и всех последующих, делается на имеющиеся комплектующие, поэтому и предлагается здесь не технология изготовления каких-либо узлов (намотка дроссля или трансформатора), а подбор ИЗ ТОГО, ЧТО ЕСТЬ, коль уж, речь идет о достаточно быстром и бесдефицитном изготовлении ЛБП.
Безусловно, найдется пара узлов, нуждающихся в модернизации, но в большинстве случаев постараемся избегать ненужных трудозатрат.
Если согласны с такой концепцией, читаем дальше.

↑ Схема 1

была собрана и испытана на популярной серии микросхем 38ХХ. В конструкции применялись микросхемы TL3842 и UCC3804. При тестировании схемы на ее вход подавались напряжения от 42 до 60В. Снимаемые токи достигали величины до 4А в диапазоне регулировки от 3 до 35В (до 50В при входном напряжении 60В).
Эта схема, как и все последующие, описанные здесь, существовала и тестировалась лишь на беспаечной макетке, что значительно скрадывало ее эксплуатационные характеристики, как если бы схема была собрана на печатной, грамотно разведенной, плате.

Работа ЛБП происходит следующим образом. После подачи питания на ЛБП, на 7 вывод ШИ-регулятора DA1 подается напряжение 12В от параметрического стабилизатора R1/VD1, достаточное для его включения. Встроенный стабилизатор напряжения микросхемы «оживает» и начинает работать тактовый генератор, частота которого определяется компонентами R6, C4. Практически сразу же на выходе DA1 (pin 6) появляется положительный импульс, фронтом открывающий полевой транзистор VT1, который, в свою очередь, открывает составной силовой ключ на транзисторах VT2, VT3, осуществляющий в открытом состоянии «накачку» контура, образованного дросселем L1, конденсатором С3 и сопротивлением нагрузки.

Как только напряжение в точке соединения элементов P1-R8 достигнет порога срабатывания усилителя ошибки (2,5В), импульс на выводе 6 микросхемы перестает существовать, запирая своим спадом транзисторы ключей в ожидании разряда контура, отдающего накопленную энергию в нагрузку. При напряжении ниже порога срабатывания усилителя ошибки, процесс «накачки» контура, с последующей отдачей энергии в нагрузку, возобновляется.

В качестве лирического отступления замечу, что ШИМ-управляемые ЛБП по большому счету — нонсенс, т. к. при простой схемотехнике, сопоставимой по сложности с линейными регулируемыми источниками питания, весьма трудно добиться внятного ШИ-регулирования из-за плохой привязки процессов, происходящих в реактивных накопительных цепях ШИ-регулируемых БП, к собственно регулируемому выходному напряжению. Мы пойдем другим путем и легко допустим сваливание ШИ-регулятора в обычный релейный режим, где пропуск 4-5 импульсов на такт регулирования будет считаться нормой. Чтобы при этом не происходило характерного свиста или гудения дросселя, повысим частоту тактового генератора ШИ-регулятора, уменьшим индуктивность дросселя.

Таким образом, ШИ-регулирование будет происходить не всегда, а лишь на участках регулирования, требующих частой «накачки» контура — на «холостом ходу» ЛБП, либо в зависимости от потребляемого тока — при подключенной нагрузке. Все остальное время работа ШИ-регулятора будет блокирована малой активностью контура, накопившего, но не отдавшего энергию, вследствии чего, напряжение на входе усилителя ошибки будет удерживаться значительное время.

Налаживание схемы заключается в подборе накопительного дросселя L1 и уточнении номиналов резисторов R8/P1. Частота генератора DA1 может быть выбрана в диапазоне 25-80кГц (что справедливо и для других схем на базе ШИМ 38ХХ) с учетом того, что индуктивность дросселя должна быть большей для меньшей частоты и наоборот. Сам дроссель должен работать без нагрева в заданом диапазоне токов, следовательно, габариты его магнитопровода не должны минимизироваться. Все дроссели, используемые в экспериментах с импульсными ЛБП были изъяты из выходных силовых цепей компьютерных БП и применялись как есть — без перемотки. Наиболее подходящими оказались дроссели на кольцах с внешним диаметром 28-32 мм, используемые когда-то в 3,3-вольтовых шинах питания компьютерных БП. Обмотки этих дросселей содержат 15-25 витков провода диаметром 1,0-1,3 мм, а индуктивность варьируется от 30 до 120 микрогенри.

О прочих компонентах схемы. Для DA1 с названием UCC3804, указанной на схеме, напряжение запуска составляет 12В. Для микросхем TL3842, так же испытанных в этом ЛБП, напряжение запуска — не менее 17В. В качестве VT1 использован КП501А (240mA/180V), который можно заменить на биполярный транзистор, как показано на схеме Б. Правда, полевой транзистор гораздо лучше справляется с ролью драйвера ключа и не нуждается в подборе сопротивлений, обладая лучшими пороговыми свойствами. VT2 — 2N5401 (0,8A/200V); VT3 — 2SC5200 (15A/230V). Транзистор VT3 при необходимости можно заменить на прибор противоположной проводимости, выполнив ключ, как показано на схеме В. Мощность каждого из резисторов, примененных в схеме, не превышает полуватта. Входной электролитический конденсатор большой емкости (отсутствующий на схеме) устанавливается по вкусу в соответствии с входным напряжением, — в случае применения классического трансформатора.

В случае использования данного ЛБП с электронным трансформатором, необходимости особой в конденсаторе нет. Почему? Об этом несколько позже.

Плюсы ЭТОГО ЛБП: простая схемка, возможны небольшие габариты конструктива, малый нагрев, позволяющий использование силового ключа без радиатора при токе до 2-х Ампер (при использоваиии указанного транзистора VT3-гарантировано), неплохая стабилизация (провал напряжения в диапазоне от 5 до 30В и подключении нагрузки, обеспечивающей ток не менее 3-х Ампер , составил не более 0,2В), бесшумная работа в рабочем диапазоне токов и напряжений, нет сложностей в настройке, возможность подачи достаточно высоких входных напряжений, определяемых лишь электрическими характеристиками полупроводниковых приборов и номиналами резисторов (в разумных, конечно, пределах).

Минусы: пульсации с частотой коммутации ключа при максимальной нагрузке достигают 200 мВ, желательна экранировка конструкции, нет защиты от КЗ (но и задача такая перед автором не стояла, а на базе данного ШИ-регулятора защита реализуется легко). Плавность регулировки так же не мешало бы улучшить путем добавления в цепь регулирования дополнительного потенциометра.

↑ Схема 2

Следующая схема имеет несколько лучшие характеристики по сравнению со Схемой 1, имея на порядок меньший уровень пульсаций во всем диапазоне регулировки выходного напряжения от +1,2 до +30В.

Концепция построения подобных схем известна мне, по меньшей мере с 1979 года, когда впервые в журнале «Радио» я увидел схему лабораторного БП, где обычный линейный регулируемый стабилизатор был совмещен со схемой импульсного регулятора, что позволяло данному ЛБП обрести характеристики линейного регулятора с высоким КПД, малыми пульсациями и высоким коэффициентом стабилизации.

Импульсный регулятор отслеживал падение напряжения на силовых электродах регулирующего транзистора стабилизатора, и в момент достижения напряжения между его входным и выходным электродами значения в 2В, прекращал подачу напряжения в LC-контур, установленный на входе линейного стабилизатора. Таким образом, при любом значении напряжения, установленного на выходе линейного стабилизатора, падение напряжения на его силовых электродах (К-Э или Э-К, — неважно в данном случае) не превышало 2-х Вольт. В самом худшем случае, мощность, рассеиваемая на транзисторе, не превысила бы 10Вт, при том, что стабилизатор был расчитан на выходной ток 5А. Что меня останавливало тогда от сборки этого ЛБП, так это большое количество деталей, которых у меня тогда не было вовсе, как, впрочем, и средств для их приобретения.

Ну, что же, ЛБП, изображенный на схеме 2, является эхом того самого, описанного в журнале «Радио» ЛАБОРАТОРНОГО БП. Эхом достаточно далеким, т. к. в различной технической литературе этот концепт в различных схемных воплощениях засвечивался не раз.

Как и в Схеме 1, ШИ-регулятор выполнен на микросхеме семейства 38ХХ (DA1), где усилитель ошибки выполняет лишь команды оптрона IC1, отслеживающего, собственно, падение напряжения на входе-выходе микросхемы DA2, являющейся классическим линейным стабилизируемым регулятором — КР142ЕН22А. Эта микросхема способна выдать ток до 7,5А при регулировке выходного напряжения от 1,2 до 37В.
Многим ЕН22А нравится именно поэтому. Но не все так просто. Мощность, которую способна выдержать микросхема, всего 30Вт. Посчитаем. При входном напряжении 40В и выходном — 30В, ток 3А будет для нее максимальным. Да и при использовании ее в обычном линейном режиме понадобится радиатор больших размеров. Ну, а, если представить, что падение напряжения на силовых электродах этой микросхемы не будет превышать 3-х Вольт?

Правильно. Это нам подойдет. Напряжение зажигания светодиода оптрона около 1,5В. Еще 0,7В упадет на последовательно включенным со светодиодом оптрона диоде VD1 и токоограничительном резисторе R2 при рабочем токе через светодиод около 10 мА — 0,33В при номинале R2 — 33Ома = 2,53В. Приблизительно. Минимальное падение напряжения на электродах микросхемы не должно быть меньше этого значения, т. к. меньшее падение напряжения на силовых электродах микросхемы может ухудшить параметры стабилизатора. Поэтому, нанеся некоторый ущерб КПД, можем увеличить сопротивление R2 до 200-300Ом.

Читайте также  Какой блок питания выбрать для 7 кулеров для охлаждения оборудования?

Эксперементально доказано, что светодиоды оптронов зажигаются уже при токе 1 мА, а «светочувствительности» входа ошибки DA1 хватает для срабатывания ШИ-регулятора. Впрочем, все познается в эксперименте и при возможном повторении конструкции, подбор номинала R2 все равно будет необходим, если только кого-то не устроят значения по умолчанию.

Ключ на мощном полевом транзисторе (пробовались IRFP460A, IRF1407, 55N80) имеет стандартное включение по отношению к DA1 и пусть никого не смущает то обстоятельство, что выход ЛБП не имеет «общего» провода.

О деталях. Дроссель — все тот же. Оптрон использовал первый попавшийся LV817. Другие не пробовал, но думаю, что результат при использовании других оптронов получится не хуже.

Наладка заключается в установке диапазона выходных напряжений (путем подбора дросселя, сопротивлений R10, 11), установке оптимального падения напряжения на DA2 путем подбора R2. Схема работоспособна в широком диапазоне входных напряжений (номиналы ориентированы 40-60В по входу).

Все плюсы ЛБП по схеме 2 уже расписаны в тексте. Можно добавить лишь то, что при проверке на нагрев, все силовые компоненты схемы, включая транзистор параметрического стабилизатора, были расположены на одном небольшом радиаторе. При токе 3А нагрев радиатора не был ощутимым. Он был просто теплым. Схема самая простая из тех (данного концепта), что мне доводилось встречать ранее.

Из минусов: Требуется параметрический стабилизатор для питания DA1, что несколько снижает общий КПД. Ну и, немного больше деталей по сравнению с предыдущей схемой. Остальные минусы найдете сами.

Топ 5 лучших лабораторных блоков питания

Топ 5 лучших лабораторных блоков питания

Приветствую тебя, искатель лучшего лабораторного блока питания для ремонта электроники. На днях я задумался какой бы мне источник постоянного напряжения прикупить для нужд ремонта и поиска неисправностей бытовой техники. Перелопатил кучу информации, соединил со своим опытом и вот так родился этот Топ 5 лучших лабораторных блоков питания для ремонта смартфонов, ноутбуков, мониторов и т.д.

Топ 5 лучших лабораторных блоков питания

  • Оптимальное соотношение цена/качество/размер
  • Диапазон регулировки до 30 В и 10 А
  • Защита от короткого замыкания
  • Выбор ремонтников
  • Хорошее соотношение цена/качество
  • Очень маленькие пульсации
  • Большие цифровые индикаторы
  • Большой трансформатор внутри
  • Дополнительный USB-разъем
  • Отображение потребляемой мощности
  • Ручка для переноски
  • Малые пульсации напряжения
  • набор дополнительных разъемов для ноутбуков
  • Корпус с ребрами теплоотвода
  • Двухканальный источник питания
  • Дополнительный выход 5 В 3 А
  • Защита от КЗ, переполюсовки и перенапряжения

Почему лабораторный?

Их так называют, потому что предназначены для эксплуатации в условиях лаборатории. То есть даже на выездной ремонт такие блоки питания брать нежелательно. Не говоря уже об эксплуатации в авто или на улице. Плюс ко всему под словом лабораторный подразумевается некая регулировка параметров и точность установки значений величин тока и напряжения.

К слову, я решил разделить импортные и отечественные источники питания в разные рейтинги по причине разной целевой аудитории. Импортные источники напряжения, применяемые для ремонта в сервисных центрах в основном имеют китайское происхождение и не имеют поверительных документов. Остается надеяться на внутренний контроль производителя. Чаще всего тут встают вопросы удобства эксплуатации и наличие защиты от короткого замыкания.

Отечественные источники тока и напряжения чаще всего имеют сертификаты и периодически поверяются для проведения регулярных измерений в инженерных целях при разработке и эксплуатации оборудования. Это накладывает на стоимость содержания приборов дополнительные расходы. Для таких блоков питания важна погрешность установки значений и надежность работы.

1 место — Long Wei LW-K3010D

По моему это лучший лабораторный блок питания среди оптимальных по соотношению цена/качество/размер. Источник питания сделан в вертикальном форм-факторе и имеет минимум регулировок: кнопка включения и две ручки регулировки напряжения и ограничения тока. Среди импульсных блоков питания можно лучше и не искать.

1 место в рейтинге блок питания

  • Установка напряжения 0 — 30 В;
  • Пульсации по напряжению до 50 мВ;
  • Установка тока 0 — 10 А;
  • Пульсации по току до 20 мА;
  • Точность установки значений ±0,5 %;
  • КПД равно 85 %;

Кстати, диапазоны изменения напряжения от 0 до 30 В и тока от 0 до 10 А считаются весьма широкими, особенно для такого малютки. Внутренности охлаждаются вентилятором, так что со временем он может загудеть. Но такая система охлаждения установлена на 90 % аналогов.

  • Отсутствует градуировка ограничения по току.
  • Оптимальное соотношение цена/качество/размер;
  • Занимает мало места на рабочем столе;
  • Большой диапазон регулировки напряжения и тока;
  • Большие цифровые индикаторы;
  • Есть защита от короткого замыкания;
  • Контакты под штекер и под зажим.

Стоимость источника питания LongWei LW-K3010D составляет около 50 $ , что согласитесь немного при нынешних ценах.

Аналоги:

  1. YiHua PS-1501A по цене около 30 $ (15 В, 1 А, маломощный, для любителей смотреть на стрелки, шумовые пульсации около 1 мВ);
  2. MCH-K305D стоимостью 60 $ (30 В, 5 А, измененный дизайн передней панели и дисплея, контакты только для подключения штекеров);
  3. Wanptek GPS3010D за смешные 70 $ (30 В, 10 А, закругленный корпус и наклонные цифры индикатора);
  4. Wanptek KPS-3010DF по цене 75 $ (30 В, 10 A, имеет дополнительные ручки точной установки напряжения и тока + комплект разъемов для ноутбуков и крокодилы);
  5. МЕГЕОН 303010 за приличные 150 $ в России (30 В, 10 А, полный клон лидера рейтинга с другой наклейкой).

2 место — Yaogong 1502DD

Этот блок питания имеет внутри тяжелый медный трансформатор, который значительно снижает пульсации. Вес при этом 3,5 кг, против 1,5 кг у первого места. За счет качества напряжения и тока источник имеет полное право называться лабораторным.

2 место в рейтинге лабораторных блоков питания

  • Установка напряжения 0 — 15 В;
  • Пульсации по напряжению до 1 мВ RMS;
  • Установка тока 0 — 2 А;
  • Пульсации по току до 3 мА RMS;
  • Точность установки значений ±0,01 %.
  • Имеет целых 3 ручки регулировки напряжения и 1 ручку регулировки ограничения по току;
  • Уменьшенный диапазон напряжения и тока.
  • Хорошее соотношение цена/качество;
  • Очень маленькие пульсации;
  • Большие цифровые индикаторы;
  • Есть защита от короткого замыкания;
  • Контакты под штекер и под зажим.

Стоимость источника питания Yaogong 1502DD всего-то 40 $ . Но внимательно смотрите на доставку таких посылок. Из-за большого веса доставка может стоить немалых денег.

Аналоги:

  1. YIHUA 1502DD всего за 35 $ (15 В, 2 А, очень популярная модель у ремонтников телефонов и смартфонов);
  2. ELEMENT 305D 15305 при стоимости 70 $можно приобрести в России (30 В, 5 А, полный аналог китайских клонов с другой этикеткой);
  3. Hong Sheng Feng PS-305 по цене 70 $ (30 В, 5 A, имеет дополнительные ручки точной установки напряжения и тока);
  4. Korad KD3005D по цене около 100 $ (30 В, 5 А, приятный дизайн, пульсации 10 мВ и 1 мА, смотрите стоимость доставки);
  5. Zhaoxin KXN-3020D стоимостью 120 $ (30 В, 20 А, расширенный диапазон по току, внушительные габариты, удобные ручки);

3 место — Long Wei PS-3010DF

Этот лабораторный блок питания также содержит внутри трансформатор для уменьшения шумов. Дополнительные опции, за которые приходится платить: дисплей для отображения потребляемой мощности и USB-разъем на передней панели.

Long Wei PS-3010DF

  • Установка напряжения 0 — 30 В;
  • Пульсации по напряжению до 10 мВ RMS;
  • Установка тока 0 — 10 А;
  • Пульсации по току до 20 мА.
  • Повышенная цена по сравнению с предыдущими вариантами;
  • Уменьшенный диапазон напряжения и тока.
  • Хорошее соотношение цена/качество;
  • Малые пульсации;
  • Большие цифровые индикаторы, в том числе потребляемая мощность;
  • Есть защита от короткого замыкания;
  • Дополнительно USB-разъем;
  • Контакты под штекер и под зажим;
  • Ручка для переноски.

Стоимость источника питания Long Wei PS-3010DF около 90 $ .

Аналоги:

  1. KORAD KA3005D по цене 110 $ (30 В, 5 А, пониженные пульсации 10 мВ и 1 мА, есть память предустановок + режим мультиметра);
  2. QJE QJ3005N по цене 80 $ (30 В, 5 A, одна большая ручка для грубой и точной установки напряжения и тока, пульсации 2 мВ и 3 мА);

МЕГЕОН 31305 за нескромные 200 $ в России (30 В, 5 А, полный клон предыдущего источника от KORAD).

4 место — Gophert CPS-3205II (NPS-1601)

Кто-то скажет — почему 4 место? Это же бест-селлер? Ну вот так, не лежит у меня душа к кнопочным блокам питания.

бест селлер блок питания для ремонта

Этот импульсный блок питания конечно не имеет трансформатора внутри. Поэтому имеет не очень удобное в использовании кнопочное управление. Все это сделано в угоду низкой стоимости. Хотя вот корпус очень хорош — с ребрами охлаждения.

  • Установка напряжения 0 — 32 В;
  • Пульсации по напряжению до 2 мВ RMS;
  • Установка тока 0 — 5 А;
  • Пульсации по току до 10 мА p-p;
  • Точность установки значений ±0,3 %.
  • Кнопочное управление;
  • Нет отдельного разъема для заземления.
  • Хорошее соотношение цена/качество;
  • Малые пульсации напряжения;
  • Большой набор дополнительных разъемов для ноутбуков;
  • Есть защита от короткого замыкания;
  • Контакты под штекер и под зажим;
  • Корпус с ребрами теплоотвода.

Стоимость лабораторного блока питания Gophert CPS-3205II с набором штекеров питания равна 60 $ .

Аналоги:

  1. Gophert CPS-3205 по цене 60 $ (32 В, 5 А, предыдущая модель, разъемы для подключения у нее сзади);
  2. Gophert NPS-1602 за скромные 50 $ (60 В, 3 А, аналог NPS-1601 с расширенным диапазоном напряжений);
  3. Gophert CPS-6017 по цене 180 $ (60 В, 17 A, повышенная мощность, пульсации 30 мВ и 30 мА).

5 место — UNI-T UTP3303

Встречайте серьезный прибор — двухканальный источник питания.

двухканальный источник напряжения UNI-T UTP3303

Такой блок питания удобно использовать при сложном ремонте блоков питания. материнских плат и смартфонов, когда на плату нужно подать два независимых напряжения. Если задействован только один канал, то второй можно нагрузить зарядкой для другого аппарата через набор переходников .

  • Установка напряжения 0 — 32 В;
  • Пульсации по напряжению до 1 мВ RMS;
  • Установка тока 0 — 3 А;
  • Пульсации по току до 3 мА RMS;
  • Точность установки значений ±0,1 %.
  • Большая масса и габариты;
  • Высокая стоимость.
  • Хорошее соотношение цена/качество;
  • Малые пульсации напряжения;
  • Дополнительный выход 5 В 3 А;
  • Есть защита от короткого замыкания, переполюсовки и перенапряжения;
  • Контакты под штекер и под зажим.

Стоимость двухканального лабораторного источника питания UNI-T UTP3303 равна 270 $ .

Аналоги:

  1. Zhaoxin RXN-305D-II имеет стоимость около 180 $ (30 В, 5 А, дополнительный выход 5 В 3 А);
  2. YIHUA 3005D-II по цене 230 $ (30 В, 5 А, популярная модель, уже появились отзывы о покупках);
  3. ATTEN TPR3003T-3C стоит около 250 $ (30 В, 3 А, пульсации 1 мВ и 3 мА);
  4. MCH 305DII по цене 400 $ (30 В, 5 A, дополнительный выход 5 В 2 А);

МЕГЕОН 32303 за волшебные 270 $ в России (30 В, 3 А, полный клон Zhaoxin RXN-305D-II с поправкой на ток).

Отечественные источники питания

Среди признанных народных блоков питания из наследия советского союза можно отметить аналоговый Б5-71/3м. Также мне приходилось использовать цифровые Б5-71мм и Б5-71/1мс по цене около 500 $. Все они находятся в Госреестре средств измерений РФ. У каждого из них есть свои недостатки.

Топ 5 лучших лабораторных блоков питания

Например у Б5-71/3м со временем выходит из строя регулировочный двухосевой потенциометр, который найти можно, но сложно.

Топ 5 лучших лабораторных блоков питания

Импульсные источники питания Б5-71/1мс и Б5-71мм отличаются тем, что от перепадов напряжения питания 220 В могут выставить другое напряжение на выходе, например 50 В. Поэтому для ответственных работ я их не использую.

Применение старых источников питания Made in USSR и самоделок оставляю в стороне. Только помните о технике безопасности при работе с ними.

Возможно, со временем этот рейтинг блоков питания будет добавляться Hi-End источниками от Agilent, Rohde&Schwarz, а также нашими Актаком и китайскими Rigol, Atten, Uni-T, Siglent и т. д.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: