СХЕМА ПЛАВНОГО ВКЛЮЧЕНИЯ

Схемы плавного включения ламп накаливания — расчет параметров и подбор автомата, типы блоков и их характеристики + 10 простых схем

Среди всех источников света люди чаще всего прибегают к старому и проверенному инструменту — лампе накаливания. И действительно, это крайне удобно и не устаревает.

У классических ламп накаливания довольно простая конструкция, состоящая из герметичной стеклянной колбы и спирали из вольфрама. Но о конструкции и подробном использовании будет сказано чуть позже.

С лампами накаливания бывают некоторые проблемы, касающиеся перегораний, замыканий и прочих неприятностей. Чтобы этого избежать, опытные пользователи прибегают к схеме плавного подключения ламп накаливания

Содержимое обзора

Принцип работы ламп накаливания

Чаще всего, у потребителей не возникает никаких вопросов касательно устройства плавного подключения ламп и того, как ими правильно пользоваться. Как уже было сказано — это элементарная конструкция, но всё-таки нужно знать несколько важных правил по эксплуатации.

Ток включения лампы. Таким словосочетанием называют силу тока, которая может проходить через лампу, чтобы она исправно работала.

  • Не нужно думать, что если ток включения конкретной лампы не тот, что вам нужен, то следует мигом идти покупать новую.
  • Этот параметр можно понизить самому. Для этого вам требуется сначала понизить напряжение, а потом медленно повышать его до номинальной величины.
  • Это вызовет некоторое перемыкание, после которого ток включения снизится. Делайте данную процедуру аккуратно и не изменяйте напряжение на лампе слишком низко.

Переходя к самому плавному включению ламп накаливания, следует начать с инструкции по обустройство и подключению к сети.

  • Сам прибор плавного накаливания включается в разрыв провода питания. Делать это нужно в ту часть электросистемы, которая находится между выключателем и самим светильником.
  • Затем подаём напряжение. Не стоит удивляться, если сначала напряжение на аппарате будет нулевым, это норма и, по сути, является принципом работы всего устройства.
  • Спираль будет нагреваться и постепенно увеличивать стоковое напряжение.

Если говорить на более профессиональном языке, то компонент под названием «фазоимпульсный регулятор» постепенно нагревает всю систему, из-за чего стоковое напряжение начинает линейно расти, пока не дойдёт до номинального значения.

Разумеется, это не всё, но это самая важная информация касательно того, как работает плавное подключение ламп накаливания.

Примеры качественных устройств

Теперь самое время перейти к конкретике. На рынке электроприборов существует великое множество устройств для плавного подключения ламп накаливания, различных защитных блоков и тому подобного.

Чтобы не потеряться в этом всём многообразии товаров, рекомендуется ознакомиться с некоторыми готовыми решениями. Эти аппараты проверены временем и радуют потребителей уже не первый город, подтверждая своё высокое качество.

Блоки защиты «Гранит».

  • Русская компания «Гранит» уже долгое время выпускает крайне качественную продукцию, которая в состоянии конкурировать с западными аналогами.
  • Защитные блоки от этой компании можно найти практически в любом хозяйственном магазине.
  • Чтобы легче было определить, обращайте внимание на желтую упаковку, так вы не перепутаете и приобретете именно нужный вам товар.
  • Они очень универсальны, подходят не только в случае, если у вас лампа накаливания.

Владельца галогеновых ламп так же могут спокойно пользоваться защитными блоками от компании «Гранит».

Миниатюрные блоки.

  • Если вы приверженец компактности и минимализма, то на помощь вам придут миниатюрные защитные контроллеры для плавного подключения ламп от отечественной компании «Navigator».
  • Помимо своей компактности, компания имеет довольно широкий ассортимент товаров.
  • Можно подобрать идеальный по мощности, размеру, энергоёмкости и другим характеристикам.

В целом, подобные защитные блоки довольно приятны в использовании, их можно спокойно положить в распределительную коробку и они проработают исправно довольно долгое время.

Причины перегорания

Помимо инструкции по использованию, всегда нужно быть ознакомленным с подводными камнями, которые могут встретиться на пути. Лампы накаливания иногда перегорают и выявить причину сразу бывает довольно трудно.

Именно поэтому рекомендуется знать следующие причины перегорания классических ламп накаливания:

  • Резкие перемены напряжения в сети, от которой питается вся электросистема. Именно поэтому крайне не рекомендуется резко повышать или понижать стоковое напряжение, даже если вы проводите ремонтные работы и следите за ситуацией. Это может обернуться коротким замыканием и перерасти в пожар.
  • Внешние факторы. Довольно обширное понятие, к которому можно отнести резкие скачки температуры, перемены во влажности воздуха, различные механические повреждения и удары. Для предотвращения всего этого нужно ставить всю электросистему в отдалённое, изолированное от внешних воздействий место.
  • Включение и выключение. Очень часто кажется, что частое включение и выключение электроаппаратуры не несёт за собой никаких вредоносных последствий, но это заблуждение. Дело в том, что во время включения лампы накаливания происходит резкий скачок всех электрических характеристик, выделяется огромное количество энергии. Всё это, понятное дело, нагружает электросистему и она начинает изнашиваться.

Чем чаще вы будете включать и выключать лампы накаливания, тем быстрее вся электросистема выйдет из строя и лампы просто перегорят.

Поиск схем подключения

Конечно, каждому кажется, что он во всё разбирается и понимает, как правильно подключать лампы накаливания и защитные блоки к ним. Смотря на фотографии плавного подключения ламп можно подумать, что это легко делается.

Не нужно переоценивать свои возможности и лучше всего будет доверить это дело специалисту. У него всегда будут под рукой схемы плавного включения ламп .

В крайнем случае, их можно найти на тематических сайтах в интернете. На них подробно указан порядок подключения и наименования компонентов, которые должны стоять на определённых местах.

Простейшая схема плавного розжига и затухания светодиодов

На просторах интернета имеется множество схем плавного розжига и затухания светодиодов с питанием от 12В, которые можно сделать своими руками. Все они имеют свои достоинства и недостатки, различаются уровнем сложности и качеством электронной схемы. Как правило, в большинстве случаев нет смысла сооружать громоздкие платы с дорогостоящими деталями. Чтобы кристалл светодиода в момент включения плавно набирал яркость и также плавно погасал в момент выключения, достаточно одного МОП транзистора с небольшой обвязкой.

Схема и принцип ее работы

схема без настройки регулировки

Рассмотрим один из наиболее простых вариантов схемы плавного включения и выключения светодиодов с управлением по плюсовому проводу. Помимо простоты исполнения, данная простейшая схема имеет высокую надежность и невысокую себестоимость. В начальный момент времени при подаче напряжения питания через резистор R2 начинает протекать ток, и заряжается конденсатор С1. Напряжение на конденсаторе не может измениться мгновенно, что способствует плавному открытию транзистора VT1. Нарастающий ток затвора (вывод 1) проходит через R1 и приводит к росту положительного потенциала на стоке полевого транзистора (вывод 2). В результате происходит плавное включение нагрузки из светодиодов.

В момент отключения питания происходит разрыв электрической цепи по «управляющему плюсу». Конденсатор начинает разряжаться, отдавая энергию резисторам R3 и R1. Скорость разряда определяется номиналом резистора R3. Чем больше его сопротивление, тем больше накопленной энергии уйдет в транзистор, а значит, дольше будет длиться процесс затухания.

Для возможности настройки времени полного включения и выключения нагрузки, в схему можно добавить подстроечные резисторы R4 и R5. При этом, для корректности работы, схему рекомендуется использовать с резисторами R2 и R3 небольшого номинала. схема розжига с регулировкойЛюбую из схем можно самостоятельно собрать на плате небольшого размера. печатная плата

Элементы схемы

Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.

Вместо IRF540 можно воспользоваться отечественным аналогом КП540.

Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.

Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.

Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.

Управление по «минусу»

схема с управляющим минусом

Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой.

«Вечная лампа» накаливания своими руками

«Вечная лампа» накаливания своими руками

Декларируемый производителями гарантийный срок службы обыкновенной лампы накаливания составляет 1000 часов. Это около 40 суток непрерывной работы. Но на практике «лампочка Ильича» служит намного дольше. И благодаря этому популярность её среди потребителей не снижается. Единственное уязвимое место лампы — вольфрамовая спираль, которая чувствительна к резким перепадам напряжения в сети. Но существуют несложные приспособления, которые устраняют этот риск, сглаживают неровности подачи тока.

Принцип работы УПВЛ

Устройство плавного включения применимо для ламп накаливания, имеющих вольфрамовую нить. Кроме ряда бытовых ламп, в эту категорию включаются и галогенные светильники, которые используются в мощных прожекторах. Принцип действия устройства заключается в замедлении подачи напряжения на спираль накала в момент включения. Это даёт возможность плавного разогрева спирали, минуя скачкообразную фазу, которая длится сотые доли секунды. Как известно, именно в этот момент чаще всего происходит перегорание. Благодаря действию электронной схемы прибора ток подаётся с постепенным нарастанием, в течение от 1 до 3 сек.

Момент перегорания лампы накаливания

Вольфрамовая нить лампы накаливания при комнатной температуре имеет низкое сопротивление, что приводит к возникновению больших токов и перегоранию спирали во время включения

Самая долго горящая лампа в мире, занесённая в книгу рекордов Гиннеса, зафиксирована в городе Ливермор, штат Калифорния. С 1901 г. и по сегодняшний день эта «столетняя лампа», как её окрестили, непрерывно освещает пожарную часть. Причём за все эти годы выключалась она всего несколько раз на непродолжительное время. Современные исследователи часто приводят её в качестве подтверждения теории «планируемого устаревания».

«Столетняя лампа»

«Столетняя лампа» была изготовлена ручным способом и имеет углеродную спираль

Читайте также  МОЩНЫЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Устройство плавного включения имеет небольшие габариты и вес. И благодаря этому его можно устанавливать:

  • в защитном колпаке люстры в месте выхода проводов;
  • в подрозетнике выключателя;
  • в распределительной коробке;
  • в пространстве над подвесным или натяжным потолком.

Устройство плавного включения лампы

Размеры устройства позволяют осуществлять установку даже в полости подрозетника

Место установки выбирается исходя из доступности и удобства монтажа. Лучшим вариантом считается тот, в котором прибор будет иметь хорошую естественную вентиляцию. Схема подключение проста — устройство врезается в разрыв одного из проводников (фазы или нуля) питающего кабеля.

Установка УПВЛ

Устройство плавного включения врезается в разрыв одного из проводов, которые подводятся к светильнику

Если для освещения используются лампы накаливания с рабочим напряжением в 12 В, УПВЛ устанавливается перед понижающим трансформатором. При таком соединении защита от неблагоприятных сетевых перепадов распространяется и на трансформатор, что тоже актуально.

Одним из побочных положительных эффектов плавного зажигания осветительных приборов является смягчение резкого ослепительного света в момент включения. Это оберегает человеческие глаза от излишних перегрузок, особенно когда свет включается в полной темноте.

Прибор УПВЛ не применяется для люминесцентных и светодиодных светильников, так как они работают на других конструктивных принципах.

Для расчёта мощности УПВЛ подсчитывают суммарную мощность потребителей. Практически это выражается в складывании номинальных показателей мощности всех ламп, к которым будет подключаться устройство. Чтобы прибор работал не на пределе своих возможностей, к суммарной мощности прибавляют 20%. К примеру, если в схему предполагается включение 5 ламп по 100 Вт, то их общая потребительская мощность составит 500 Вт. К этому числу добавляют 20% — 100 Вт и получают искомое значение мощности УПВЛ — 600 Вт.

Схема подключения УПВЛ

Устройство плавного включения может устанавливаться внутри распределительной коробки

В сети магазинов, торгующих электротоварами, продаются УПВЛ, производимые в заводских условиях. Среди них есть как отечественные, так и зарубежные модели. Названия могут различаться, но в принципе это пластиковый контейнер с размерами меньшими, чем спичечная коробка. Часто акцент в названии делается на защитную функцию прибора для галогенных ламп. Но прибор вполне применим и для обычных ламп накаливания. Другое возможное название устройства — фазовый регулятор. Обычно так называют более мощные УПВЛ с несколько изменённой системой управления. Цена такого устройства может меняться от 300 до 600 рублей в зависимости от номинальной мощности.

Устройство плавного включения лампы запрещено применять для плавного запуска двигателей электроинструментов и других бытовых приборов.

Тем же, кто владеет базовыми знаниями в радиоэлектронике, можно предложить самостоятельное изготовление УПВЛ. Вот несколько схем, с помощью которых можно продлить жизнь осветительной лампы во много раз.

Тиристорная схема

В тиристорной схеме используются простые и доступные детали. Основой служит тиристор VS1 и четыре диода VD1 — VD4, соединённые в выпрямительный мост. Кроме того, понадобится конденсатор C1 ёмкостью 10 мкФ и резисторы R1 (переменной ёмкости) и R2.

Тиристорная схема плавного включения лампы

В тиристорной схеме подача напряжения на лампу производится по прошествии времени, которое задаётся переменным сопротивлением R1

При подаче напряжения электрический ток проходит сквозь спираль лампы и выпрямляется в диодном мосте. После прохождения резистора начинается зарядка конденсатора. Достигая порога напряжения, тиристор открывается, и через него течёт ток лампы. В итоге происходит постепенный накал нити вольфрама. При помощи резистора переменной ёмкости R1 можно регулировать время «разгона» лампы.

Симисторная схема

Использование симистора VS1 в качестве силового ключа приводит к тому, что в схеме используется меньшее количество деталей.

Симисторная схема плавного включения лампы

Принцип работы симисторной схемы аналогичен тиристорной, но она содержит меньше деталей

Дроссельный элемент L1 служит для подавления помех при отмыкании силового ключа. По большому счёту его при необходимости можно исключить из схемы. Цепочка, задающая время, состоит из сопротивления R2 и конденсатора C1, питающихся через диод VD1. Сопротивление R1 снижает ток на электроде управления VS1. Принцип действия цепи подобен предыдущей — создаётся временная пауза на время заполнения ёмкости конденсатора, симистор открывается и через него протекает ток, питающий лампу EL1.

Плавное включение лампы накаливания

Прибор на основе схемы симисторного регулятора с конденсатором переменной ёмкости имеет компактные размеры из-за небольшого количества деталей

Схема на специализированной микросхеме

В основе цепи лежит специализированная микросхема КР1182ПМ1(или DIP8 в импортном варианте), снабжённая двумя тиристорами и двумя системами их управления. Ёмкость C3 и сопротивление R2 регулируют продолжительность времени включения (выключения). Для разделения управляющей и силовой части служит симистор VS1, ток на управляющем электроде задаёт сопротивление R1. Наружные ёмкости C1 и C2 устанавливаются для регулировки работы тиристоров внутренней цепи микросхемы. Для защиты от помех применены резистор R4 и конденсатор C4.

Схема устройства плавного пуска лампы

УПВЛ на основе специализированной микросхемы не только плавно включает, но и выключает лампу с небольшой задержкой, ещё более увеличивая срок её службы

Во время подключения устройства к линии подачи напряжения на лампу контакты выключателя SA1 должны находиться в замкнутом положении. Конденсатор С3 набирает ёмкость при размыкании контактов SA1. Во время постепенного увеличения тока через сопротивление R1, управляющего силовым ключом на выходе ИМС, происходит плавный запуск симистора VS1 и лампы EL1, соединённой с ним последовательно.

Примечательно, что эта схема не только замедляет накал спирали во время включения, но и затормаживает её потухание. Лампа гаснет так же плавно, как и загорается. Длительность задержки устанавливается на стадии сборки прибора путём подбора ёмкости конденсатора C3. При желании можно увеличить задержку пуска лампы до 10 сек. Плавность отключения регулирует сопротивление R2.

Не следует путать устройство плавного включения лампы с диммером. УПВЛ — это автоматический регулятор, плавно повышающий ток на осветительном приборе в момент включения. Диммер — это прибор, при помощи которого осуществляется ручная настройка яркости освещения.

Характерным свойством УПВЛ и фазных регуляторов считается то, что прибор понижает выходное напряжение на лампу (с 230 до 200 В). Это дополнительно увеличивает её срок службы.

Видео: устройство плавного включения лампы на полевых транзисторах

Применение устройства плавного включения

Установка прибора не требует высокой квалификации. Справиться с монтажом под силу любому человеку, владеющему отвёрткой и индикатором напряжения. В кабеле, ведущем к лампе, делается разрыв одного — фазного или нулевого — провода и к нему подсоединяется прибор. Крепление проводов лучше всего осуществлять при помощи клеммников, так как это даёт гарантию устойчивого и надёжного соединения. Если применить клеммники возможности нет, рекомендуется спаять скрутки оловянным припоем.

Эксплуатация УПВЛ не предполагает дополнительного к себе внимания. Заводские модели сопровождаются гарантийными обязательствами до 3 лет. На практике они работают гораздо дольше.

Во время сборки устройства не следует забывать о том, что высокое напряжение сетевого тока может причинить вред здоровью человека. Перед соединением проводов необходимо убедиться в отсутствии тока в кабеле питания лампы.

Видео: как работает фазовый регулятор на симисторах

Устройство плавного включения лампы экономит не только расход электроэнергии, но и расход денег на покупку перегорающих светильников.

Плавное включение и выключение фар (продление срока службы ламп)

Как известно, лампы накаливания перегорают в основном в момент включения. Связано это с тем, что электрическое сопротивление холодной нити накаливания лампы намного меньше сопротивления раскаленной нити. Поэтому, в момент включения, через нить проходит ток, значительно превышающий номинальную величину. Если лампа уже не новая и ее нить со временем стала тоньше, этого повышенного тока достаточно, чтобы в момент включения лампа перегорела.

Для продления срока службы ламп накаливания необходимо обеспечить плавный разогрев нити лампы накаливания, путем постепенного увеличения подаваемого на лампу напряжения. Сделать это можно, включив в цепь питания лампы устройство "плавного пуска".

В Интернете можно найти множество схем для обеспечения плавного включения ламп. В продаже есть и готовые решения, например, реле 405.3787-02, выпускаемое ЗАО "Энергомаш", г. Калуга (фото 2, 3):

Данное реле обеспечивает плавное повышение напряжения питания на нагрузке от нуля до номинальных 12В в течение 1 секунды. При выключении, напряжение также плавно снижается до нуля в течение 1 секунды. Максимальный ток потребления нагрузки составляет 25А (фото 4, 5). Ток потребления стандартной автомобильной галогенной лампы 12В/55Вт составляет около 5А. Как видим, характеристик реле 405.3787-02 с запасом хватает, чтобы обеспечить плавный розжиг до четырех ламп головного света.

Данное реле выполнено в стандартном полноразмерном четырехконтактном корпусе (фото 6, 7). Реле такого форм-фактора широко применяются в отечественных автомобилях, например, "жигулях" и "самарах".

Внутри корпуса реле расположена печатная плата, для защиты от влаги залитая прозрачным компаундом. С другой стороны платы установлен силовой транзистор с небольшим алюминиевым радиатором (фото 8, 9):

Как правило, в штатной проводке, питание ламп ближнего и дальнего света, а также противотуманных фар, организовано парами, при этом питание на левую и правую лампы подается от одного реле.

Таким образом, для реализации плавного включения и выключения ламп, например, ближнего света, достаточно заменить штатное реле ближнего света на реле 405.3787-02.

ВНИМАНИЕ! Данное электронное реле 405.3787-02 чувствительно к полярности включения, у него на контакт 30 должен подаваться плюс, на 87 — минус. При ошибочном подключении в обратной полярности, реле может выйти из строя. Поэтому, при установке следует учитывать, на какие контакты 30 и 87 штатного реле подаются плюс и минус питания. Возможные схемы подключения приведены на фото 10.

В проводке отечественных автомобилей, у 4-контактных малогабаритных реле типа 98.3747-111 или 405.3787-04, силовой плюс обычно подается на контакт 30 реле (с краю). Но у автомобилей иностранного производства полярность подключения штатных реле может быть иным. Например, в блоке предохранителей Chery Tiggo 5 силовой плюс подается на центральный контакт 5 (87). Это видно на переходнике на фото 15, где синий провод — минус, красный — плюс.

Если штатное реле имеет такие же размеры, расположение и полярность контактов, достаточно всего лишь заменить одно реле на другое. Немного сложнее, если штатное реле отличается по размерам и конфигурации контактов. В этом случае придется делать переходник. На моей машине штатные реле были меньше по размеру, поэтому потребовался переходник (фото 11).

Добавлено: В продаже появилось также малогабаритное реле 405.3787-04 с плавным включением, но по сравнению с реле 405.3787-02 оно имеет меньший ток коммутации 15А против 25А у большого реле.

Для изготовления переходника прекрасно подошло малогабаритное 4-контактное отечественное реле 98.3747-111, которое и по размерам, и по конфигурации контактов совпадало со штатными реле фар моего автомобиля (фото 12):

Читайте также  ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Удаляем начинку реле, оставляем только контактные ножки (фото 13). Не забываем также удалить гасящий резистор (фото 14):

Приобретаем колодку для стандартного (полноразмерного) реле, они обычно уже с проводами. Припаиваем соответствующие провода к переходнику, для надежности заливаем термоклеем. Также, можно дополнительно защитить провода трубкой-кембриком или гофрой (фото 15-17):

Подключаем реле плавного пуска к переходнику и устанавливаем в блок предохранителей. На фото 18-20 таким образом подключены два реле, ламп ближнего света и противотуманных фар:

Питание ламп дальнего света не переделывал, так как с плавным включением не получится быстро мигать, лампы не успеют разгореться.

Ниже на видео показан результат работы реле 405.3787-02. Видим, что лампы теперь включаются и выключаются плавно, в течение 1 секунды.

В начале второго видео, для иллюстрации, одновременно включаются лампы дальнего и ближнего света, при этом хорошо заметна разница, какие лампы включаются с задержкой, а какие без:

При установке новых реле, я также поставил новые лампы ближнего света и ПТФ. Посмотрим, какой теперь будет их ресурс. В любом случае, включение головной оптики стало смотреться однозначно интереснее.

Надеюсь, данный материал был для вас интересен и полезен.

Всем ровной дороги, до связи!

Добавлено: В продаже появилось также малогабаритное реле 405.3787-04, аналогичное по характеристикам реле 405.3787-02, но в другом корпусе.

Комментарии 133

Приветствую! И как? Продолжает работать? Хотелось бы услышать положительный ответ. Вопросы обусловлены тем, что обжегся на продукции Энергомаш. ДХО — 2 дня исправной работы. Через пол-года отправил назад. Жду возврата денег. Хотел обменять, но такого протокола у них нет. Жду что скажут. Вскрывал колпачок, припаивался под ним.

Приветствую. Реле работают исправно. Лампы с тех пор еще не менял, не перегорали.

Во-первых — это всего на всего 40009-й миф, не подтвержденный ни чем. Нет ни одного исследования, ни одной статьи с практическими сравнительными ресурсными испытаниями по поводу "плавного старта".
Есть подобные вещи, показывающие зависимость срока службы лампы накаливания от напряжения. К примеру если взять срок службы как 100%, а номинал ровно 12В — то при снижении напряжения на 1В срок службы увеличивается до 130%, при увеличении до 14В — наоборот, падает до 70%. Цифры с потолка, но примерно суть и масштабы отражают. Единственный способ весомо продлить срок службы лампы — стабилизировать питание. Однако сделать это для нагрузки в 130-160W — выйдет дороже, чем сменить несколько комплектов H4, плюс надежность на отказ снижается в разы, если не в десятки раз. Вылетит ночью в пути ваша электронная "плавнопускалка" в обрыв — и здравствуй встречный камаз или дерево. Тем более схемотехника от энергомаш-калуга — радиокружок, а не производство, там схемотехники за еду похоже трудятся, видел на своем столе парочку изделий. Больше похоже на труды китайцев середины 90-х.
Во вторых — любая лампа в автомобиле с бОльшей степенью вероятности тупо "стрясется" от вибраций намного раньше, чем от броска тока или чем она светилась бы в спокойных условиях лежа на столе.

Статистики у меня действительно нет, так что время покажет. Пока 2.5 года лампы держатся, еще не менял.

Так и я примерно столько же не меняю, это не показатель. Если каждую ночь в дороге, то за пол года выгорят любые, если ездить в тёмное время пару часов в день, может и на 5 лет хватить. Примерное количество часов указано на коробке от лампы, и это значение не увеличить никакими приблудами. Вся фишка в том, что неизвестно, от чего раньше оторвется истонченная спираль — от вибраций или от броска тока. Намного это срок службы не продлит, а вот на безопасность влияет конкретно. Раз в год и палка стреляет, а головная оптика — не самое удачное место для колхоза.

Во-первых — это всего на всего 40009-й миф, не подтвержденный ни чем. Нет ни одного исследования, ни одной статьи с практическими сравнительными ресурсными испытаниями по поводу "плавного старта".
Есть подобные вещи, показывающие зависимость срока службы лампы накаливания от напряжения. К примеру если взять срок службы как 100%, а номинал ровно 12В — то при снижении напряжения на 1В срок службы увеличивается до 130%, при увеличении до 14В — наоборот, падает до 70%. Цифры с потолка, но примерно суть и масштабы отражают. Единственный способ весомо продлить срок службы лампы — стабилизировать питание. Однако сделать это для нагрузки в 130-160W — выйдет дороже, чем сменить несколько комплектов H4, плюс надежность на отказ снижается в разы, если не в десятки раз. Вылетит ночью в пути ваша электронная "плавнопускалка" в обрыв — и здравствуй встречный камаз или дерево. Тем более схемотехника от энергомаш-калуга — радиокружок, а не производство, там схемотехники за еду похоже трудятся, видел на своем столе парочку изделий. Больше похоже на труды китайцев середины 90-х.
Во вторых — любая лампа в автомобиле с бОльшей степенью вероятности тупо "стрясется" от вибраций намного раньше, чем от броска тока или чем она светилась бы в спокойных условиях лежа на столе.

у меня с блоком плавного пуска лампы живут 18месяцев, а без них и пол-года не могут протянуть! вот и вся суть.

Выше рассказал, почему это — не показатель. Теория — да, есть такая. Можно сказать — миф. Но практически никто никогда не заморачивался сравнительными тестами, потому что эффект экономический по любому — нулевой. Видел тут как то народ, покупавший магнитики на топливную магистраль) Тоже отчитывались, что машины кушать бензина стали меньше. Тут все — аналогично. Вольфрамовая спираль истончается независимо от того, как включается любая лампочка накаливания. Это нормальный процесс. Заметно увеличить срок службы можно только снижением питания на 5-10%. Ну и яркость есс-но снизится тоже заметно) Такая экономия вряд ли кого устроит. Все остальное, типа плавного розжига — не более чем маркетинг, плацебо, религия. Это не мнение. Это физика. Возможно на вашем "блоке" падает вольт-другой, вот и все чудеса. Скрутки, сопротивление на лишних контактах, тонкие сопливые проводочки дают свои доли Ома, и на всем этом падает напряжение. Я наоборот увеличивал сечение проводки и сокращал падение на ней, чтобы ярче светили. Когда мне станет напряжно покупать раз в год комплект H4 за 1,5-2 к.р. — значит пора будет пересаживаться на троллейбус)

Особого смысла для лампы в плавном включении/выключении нет. Для защиты спирали — главное убрать скачок тока при включении, а чтобы убрать падение напряжения на лампе — есть конвертеры напряжений.

Плавное включение как раз и убирает скачок тока. Плавное выключение — согласен, дает визуальный эффект, не более.

Вредительский девайс. Гасить лампы надо резко.

Ваш пост натолкнул меня на мысль сделать режим недокала на противотуманках, чтоб работали в режиме ДХО.
Как считаете если в этом режиме пустить ток через мощный сдвоенный диод например от сварочника или компьютерного БП, этого хватит для долговечности ламп? Падение будет около 1.5-1.8В . Ток около 10А ( 2 х 55Вт)

Другой вопрос, работает ли это в случае галогенок? Ведь у них испаряющийся вольфрам за счет чего_то_там возвращается на место, думаю при определенных условиях.

1. В любом случае, при снижении напряжения даже на 1.5-2В температура нити лампы будет меньше и срок службы больше. Вот насколько дольше, я точно сказать не могу, пусковые токи при холодном включении все равно будут большие. Поэтому плавный розжиг предпочтительнее. Для ДХО применяют также последовательное включение ламп, тогда напряжение на лампах делится пополам и диоды не нужны.
2. Галогенные лампы по сути такие же лампы накаливания, только заполненные газом, что несколько продлевает ресурс.

DoubleDrummer

Ваш пост натолкнул меня на мысль сделать режим недокала на противотуманках, чтоб работали в режиме ДХО.
Как считаете если в этом режиме пустить ток через мощный сдвоенный диод например от сварочника или компьютерного БП, этого хватит для долговечности ламп? Падение будет около 1.5-1.8В . Ток около 10А ( 2 х 55Вт)

Другой вопрос, работает ли это в случае галогенок? Ведь у них испаряющийся вольфрам за счет чего_то_там возвращается на место, думаю при определенных условиях.

В условиях недокала по опыту галогенки быстрее выходят из строя. Предполагаю что для того, чтобы работал процесс переноса нужна температура не ниже определенной.

Плавный розжиг и затухание светодиодов: особенности, устройство, схема

Помимо чисто декоративной функции, например, подсветки автосалона, применение плавного включения, или розжига, имеет основательное практическое значение для светодиодов – существенное продление срока службы. Поэтому рассмотрим, как сделать своими руками устройство для решения такой задачи, стоит ли вообще самостоятельно его мастерить или лучше купить готовое, что для этого потребуется, а также какие варианты схем при этом доступны для любительского изготовления.

Покупать или делать самому

Первейший вопрос, возникающий при необходимости включения в схему модуля плавного розжига светодиодов, это сделать ли его самостоятельно или купить. Естественно, легче приобрести готовый блок с заданными параметрами. Однако у такого способа решения задачи есть один серьезный минус – цена. При изготовлении своими руками себестоимость такого приспособления снизится в несколько раз. Кроме того, процесс сборки не займет много времени. К тому же, существуют проверенные варианты устройства – остается лишь обзавестись нужными компонентами и оборудованием и правильно, в соответствии с инструкцией их соединить.

Светодиоды

Обратите внимание! Лэд-освещение находит широкое применение в автомобилях. Например, это могут быть дневные ходовые огни и внутренняя подсветка. Включение блока плавного розжига для светодиодных ламп позволяет в первом случае существенно продлить срок эксплуатации оптики, а во втором – предотвратить ослепление водителя и пассажиров резким включением лампочки в салоне, что делает подсветительную систему более визуально комфортной.

Что нужно

Чтобы грамотно собрать модуль плавного розжига для светодиодов, потребуется набор следующих инструментов и материалов:

  1. Паяльная станция и комплект расходников (припой, флюс и проч.).
  2. Фрагмент текстолитового листа для создания платы.
  3. Корпус для размещения компонентов.
  4. Необходимые полупроводниковые элементы – транзисторы, резисторы, конденсаторы, диоды, лед-кристаллы.

Однако прежде чем приступить к самостоятельному изготовлению блока плавного пуска/затухания для светодиодов, необходимо ознакомиться с принципом его работы.

На изображении представлена схема простейшей модели устройства:

В ней три рабочих элемента:

  1. Резистор (R).
  2. Конденсаторный модуль (C).
  3. Светодиод (HL).

Резисторно-конденсаторная цепь, основанная на принципе RC-задержки, по сути и управляет параметрами розжига. Так, чем больше значение сопротивления и емкости, тем дольше период или более плавно происходит включение лед-элемента, и наоборот.

Рекомендация! В настоящий момент времени разработано огромное количество схем блоков плавного розжига для светодиодов на 12В. Все они различаются по характерному набору плюсов, минусов, уровню сложности и качеству. Самостоятельно изготавливать устройства с пространными платами на дорогостоящих компонентах нет резона. Проще всего сделать модуль на одном транзисторе с малой обвязкой, достаточный для замедленного включения и выключения лед-лампочки.

Схемы плавного включения и выключения светодиодов

Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:

  1. Простейшая.
  2. С функцией установки периода пуска.
Читайте также  СХЕМА ДЛЯ ГОЛОСОВОГО УПРАВЛЕНИЯ

Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.

Простая схема плавного включения выключения светодиодов

Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.

В ее основе лежат следующие комплектующие:

  1. IRF540 – транзистор полевого типа (VT1).
  2. Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
  3. Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
  4. Led-кристалл.

Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:

  1. При запитывании цепи через блок R2 начинает течь ток.
  2. Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
  3. Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
  4. Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.

Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.

Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).

Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:

  1. Сила тока стока – в пределах 23А.
  2. Значение полярности – n.
  3. Номинал напряжения сток-исток – 100В.

Важно! Ввиду того, что быстрота розжига и затухания светодиода полностью зависит от величины сопротивления R3, можно подобрать необходимое его значение для задания определенного времени плавного пуска и выключения лед-лампочки. При этом правило выбора простое – чем выше сопротивление, тем дольше зажигание, и наоборот.

Доработанный вариант с возможностью настройки времени

Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента – R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.

Приведенные выше версии схем предполагают управление по плюсу, однако в некоторых ситуациях требуется контроль по минусу. В таком случае система будет иметь обратную полярность. Поэтому в ней нужно поставить конденсатор наоборот – чтобы плюсовой заряд шел на транзисторный исток. Кроме того, необходимо заменить и сам транзистор, теперь он должен быть p–канального типа, к примеру, IRF9540N.

Основные выводы

Плавный розжиг светильников на основе светодиодов популярен в автоподсветке. Кроме того, медленное включение лед-элементов позволяется продлить срок их службы, независимо от места установки. Такое устройство можно купить или изготовить самостоятельно. В последнем случае оно обойдется гораздо дешевле. Для сборки потребуются следующие материалы и инструменты:

  1. Паяльник с паяльными принадлежностями.
  2. Основа для платы, например, кусок текстолита.
  3. Корпус для крепления элементов.
  4. Резисторы, транзисторы, диоды, конденсаторы и прочие полупроводниковые элементы.

Механизм прибора плавного розжига для светодиодов работает на принципе задерживания, возникающего в цепи «резистор-конденсатор». При этом существуют две основные схемы – простейшая и с возможностью регулировки времени зажигания. Последняя отличается от первой наличием двух резисторов с контролируемым сопротивлением. Чем выше его значение, тем дольше период медленного пуска, и наоборот.

Если вы имеете опыт сборки схемы плавного розжига светодиодов, рассмотренных или иных версий, обязательно поделитесь полезным опытом в комментариях.

Плавное включение ламп: принцип работы системы и инструкция по подключению своими руками. 10 проверенных схем!

При использовании электроприборов необходимо обеспечить безопасные условия для их эксплуатации. Не является исключением и практика применения обычных ламп накаливания или галогенных модификаций. Показатели тока в момент включения превышают его номинальное значение.

При частом включении ламп это негативно влияет на их работоспособность и долговечность. В таких случаях целесообразно обеспечить плавное включение ламп накаливания.

Краткое содержимое статьи:

Для чего используется

Одной из причин, приводящих к поломке ламп накаливания, является резкий скачок тока, который происходит при включении. Этот факт нужно учитывать, отвечая на вопрос, как работает плавное включение ламп.

Если вольфрамовая нить лампы не нагрета, оставаясь в холодном состоянии, то у нее все равно присутствует некоторое сопротивление. Причем его величина достаточно высока, например для изделия с мощностью 75 Вт она равна 52,4 Ом. Можно рассчитать, что при стандартном напряжении в 220 В сила тока составит 4,19 А.

Теперь важно понять, что такой ток будет протекать определенный отрезок времени. Примерно он равен чуть менее секунды и зависит от того, как прогревается вольфрамовая нить.

Как только ее температура возрастает, одновременно увеличится сопротивление. В результате сила тока будет многократно ниже первоначальной, пусковой величины.

Если лампу регулярно включать-выключать, то под влиянием токовых скачков со временем она перегорит, не дотянув до номинально установленного срока службы.

Принцип действия

Блоки защиты для плавного включения действуют следующим образом. С их помощью происходит постепенное повышение напряжения, которое поступает к лампе, – с 0 В до, например, 171 В. В этом случае существенно ограничиваются пусковые токи. А лампочки зажигается плавно.

Однако при этом от вас потребуется использование более мощных ламп накаливания, поскольку при снижении питающего напряжения уменьшается световой поток. Хотя срок эксплуатации возрастет.

Каждое продающееся устройство для регулирования включения имеет определенные ограничения по мощности. Поэтому целесообразно заранее выяснить, какие параметры пусковых скачков напряжения в сети. Приобретать надо устройства, имеющие минимальный запас 30% по мощности.

Ну а перегружать такие устройства нельзя – они быстро могут выйти из строя. С увеличением допустимого ограничения возрастают и габаритные характеристики приспособления.

Если вам необходимо приобрести устройство плавного включения ламп, то можно остановить выбор на Uniel Upb-200W-BL, у которого ограничение по мощности составляет 200 Вт. Однако такое приспособление не будет работать с люминесцентными лампами и диммерами.

Неплохим вариантом является УПВЛ Гарант – это простое в монтаже и эксплуатации устройство, отличающееся повышенным качеством исполнения и долговечностью. Для защиты ламп накаливания и галогенных модификаций используется многофункциональное УПВЛ Navigator.

Особенности монтажа

После того, как вы приобрели блок защиты, необходимо определиться с местом и схемой установки. Ведь ошибки на этом этапе могут снизить эффективность всего решения.

Как найти место для установки

Монтировать данное приспособление можно на самых различных участках. Главное требование – не следует закрывать блок отделочными конструкциями. Поэтому не рекомендуется маскировать его гипсокартоном или натяжными полотнами.

Неплохим решением является монтаж устройства на потолке непосредственно возле светильника или у его основания. Ну а если вы выбрали компактную модификацию, то она вполне может поместиться в подрозетнике выключателя или же в распредкоробке.

Не забывайте, что важно не только обеспечить легкость доступа для тестирования исправности или замены, но и создать условия для охлаждения посредством естественной циркуляции воздуха.

Выбор схемы

Схема плавного включения ламп выбирается наиболее простая, обеспечивающая легкость и надежность эксплуатации. Однако иногда можно использовать интеграционный метод подключения вместе с симистором. Блоки УПВЛ могут заменяться и полевыми транзисторами. Для контроля напряжения в отдельных случаях задействуются автоматические устройства.

При решении задачи подключения ламп 220 В необходимо провод, который идет на блок защиты, подсоединить от фазы перед лампой. Он выполнит роль посредника между лампочкой и кабелем. Блок, таким образом, подключается последовательно к цепи, направленной к лампе.

Важно обеспечить запитку в разрыв провода фазного типа. Это и означает подключение последовательно с выключателем. Если же вы решили применять симистор, то к нему и надо подключать УПВЛ. Сделать это следует параллельно.

В случаях, когда напряжение электропитания светильников составляет 12 В или 24 В, то подключать блок следует до трансформатора понижающего действия. Причем делают это последовательно к его первичной обмотке.

Использование диммеров

Часто применяют контроллер для плавного включения ламп. Такой светорегулятор позволяет также управлять и яркостью освещения. Пользователь может заранее задать нужный режим или управлять включением-выключением при помощи хлопка или пульта. Все зависит от выбранной модели.

Светорегулятор ставится вместо стандартного выключателя. Подключение производится в разрыв фазного кабеля. В таком случае между диммером и нулем будет стоять лампочка, подсоединение к которой оказывается последовательным.

Диммер можно использовать и совместно с выключателем. Его обычно монтируют у двери. В таком случае его место в цепи будет на разрыве фазы и диммера. В некоторых случаях создается возможность регулирования включением люстры из двух мест квартиры. Для этого следует использовать два светорегулятора, которые соединены посредством распредкоробки.

Можно ли изготовить устройство своими руками

Если вы ищете способ изготовить приспособление, обеспечивающее плавное включение лампы, своими руками, то можно предложить такой достаточно простой вариант. Речь идет о тиристорной схеме. Предполагается, что после включения электропитания ток идет через лампу на мост выпрямительного типа. Посредством резистора происходит зарядка электролита.

Как только напряжение достигает заданной величины, происходит открытие порога тиристора. И ток уже движется непосредственно к лампе, что приводит к плавному разогреву вольфрамовой нити.

Существует и иной способ, требующий, однако, покупки специальной микросхемы КР1185ПМ1. Она действует для плавного запуска ламп с мощностью до 150 Вт. В противном случае потребуется силовой симистор.

Устройства для плавного включения ламп позволяют более экономно использовать электроэнергию, обеспечивая и долговечность ламп накаливания. Подключение к цепи не составляет особых сложностей, а сам блок достаточно компактен.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: