СХЕМА РЕГУЛЯТОРА МОЩНОСТИ

Схемы регуляторов мощности (диммеров) на симисторах.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3. 5% от максимальной.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Симисторный регулятор мощности

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.

Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов — самое то.

Симисторный регулятор мощности

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),

Симисторный регулятор мощности

Рис.5

так и управлять более мощными симисторами (Рис.6).

Симисторный регулятор мощности

Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

Универсальные схемы регуляторов мощности

Регуляторы мощности, о которых речь пойдет ниже, могут быть использованы для работы с любой нагрузкой, мощность которой не превышает 3-х кВт. Силовые компоненты представленных регуляторов управляются простыми ШИ-схемами с синхронизацией частотой осветительной сети. Входное напряжение для нормальной работы регуляторов может иметь погрешность до 20% в обе стороны. Универсальность предлагаемых схем заключается в возможности применения в качестве силовых регулирующих компонентов тиристоров, симисторов или мощных полевых транзисторов при использовании одной и той же универсальной печатной платы.

рис.1 — схема регулятора 1

Управляющая часть схемы (рис. 1) первого регулятора выполнена на логической КМОП микросхеме U1 — CD4093 (К561ТЛ1) с триггерами Шмитта на входах, первые два элемента которой (U1.1, U1.2) выполняют функции формирователя прямоугольных импульсов, регулируемых по ширине с помощью потенциометра PR1. Импульсы (полупериоды сетевого напряжения) частотой 50Гц подаются на вход U1.1 с однополупериодного выпрямителя (диоды D1, D2) через резистивный делитель R3, R4, R5, подобранный таким образом, что бы порог срабатывания микросхемы (1,3В приблизительно) приходился на начало (5-7%) роста амплитуды положительного полупериода сетевого напряжения. На выходе U1.1 формируется последовательность прямоугольных импульсов (спад которых совпадает по времени с началом каждого полупериода), заряжающих конденсатор C2 при положительных значениях импульса и линейно разряжающие его при каждом спаде на выходе U1.1 через резисторы R6, R7, PR1. В зависимости от времени разряда конденсатора (определяется емкостью C2, сопротивлением цепи R6, R7, PR1) меняется во времени и ширина прямоугольных импульсов на выходе элемента U1.2. Элементы U1.3 и U1.4 являются инвертирующими повторителями и формирователями полярности, созданных U1.2 импульсов управления. Транзисторы Q1, Q2 формируют импульсы, мощность которых достаточна для управления затворами полевых транзисторов (если именно они будут применены в качестве силовых ключей), либо для управления светодиодом динисторного оптрона VO1 (в случае, если в качестве регуляторов будут использованы тиристоры или симистор). В результате изменения ширины управляющего импульса (с помощью PR1), напряжение (а, следовательно, и — мощность) на нагрузке может изменяться от 0 до 100%. Питание схемы управления и подача импульсов на ее вход организованы через гасящий резистор R1, сопротивление которого рассчитано для получения напряжения питания (от +8 до +13В) схемы управления. Сглаженное постоянное напряжение на катоде диода VD1 ограничено стабилитроном VZ1. Т.к. схема и печатная плата регулятора являются универсальными, компоненты схемы RA1, VO1, RAF1, DF1-DF6, RF1, RF2, VF1, VF2 — не используются при монтаже платы, если регулятор выполняется на полевых транзисторах. Наоборот, эти элементы используются, но не устанавливаются в схему Q3, Q4, R10, R11, если планируется изготовление тиристорного регулятора. Схема управления одинаково хорошо работает и с тиристорами и транзисторами. Имеется возможность установки симистора вместо тиристора VF1. В этом случае отменяется использование компонентов Q3, Q4, R10, R11, VF2, DF5, DF6, а значения резисторов RF1, RF2 остаются прежними, как и при использовании тиристоров.

Читайте также  СХЕМА САМОДЕЛЬНОГО РОБОТА


рис.2 — схема регулятора 2

Вторая схема (рис. 2) аналогична первой по принципу управления, но вместо логической микросхемы в качестве управляющего ШИ-элемента используется не менее популярная — LM555. В качестве формирователя прямоугольных задающих импульсов с частотой сети использованы маломощные полевые транзисторы Q1, Q2 (2N7000). На транзисторе Q1, стабилитроне VZ2, резисторе R2 выполнен параметрический стабилизатор напряжения, питающийся от выпрямителя на диоде D1 с гасящим резистором R1 на входе. Конденсаторы С1 и С2 образуют совместно с транзистором Q1 сглаживающий фильтр, снижающий в достаточной степени пульсации сетевого напряжения. Напротив, в точке соединения резистора R3 и подстроечного потенциометра PR1, образующих регулируемый делитель напряжения, присутствует пульсирующее напряжение, полученное после частичного (однополупериодного) выпрямления диодом D1 и ограниченное стабилитроном VZ1 (для защиты затвора транзистора Q1 от возможного перенапряжения). Пульсации эти необходимы для формирования импульсов с помощью пороговых свойств транзистора Q1. В то время, когда напряжение в средней точке делителя R3-PR1 ниже порогового значения реакции затвора (для таких транзисторов порог срабатывания может лежать в диапазоне 1-3В), канал исток-сток транзистора будет заперт и на стоке будет присутствовать логическая единица в виде потенциала, близкого по значению к напряжению питания. И, — наоборот, — при напряжении, превышающего пороговое значение реакции затвора Q1, канал исток-сток будет открыт и на стоке образуется логический ноль по причине замыкания резистора R5 на общий провод схемы через открытый канал транзистора Q1. Q2 является инвертирующим элементом, формирующим сигнал сброса в виде импульса отрицательной полярности для одновибратора на таймере U1, принуждая его к работе каждый раз синхронно с нарастанием амплитуды сетевого полупериода. С появлением «импульса сброса» на входе U1 (вывод 2 микросхемы) на выходе таймера (вывод 3) формируется крутой фронт положительного импульса, длительность которого определяется номиналами элементов C5, PR2, R10.

Таким образом, изменяя сопротивление потенциометра PR2, можно менять ширину импульса на выходе U2, изменяя время открывания силовых компонентов схемы, а, значит, и выходное напряжение на нагрузке. Точно так же, как и в предыдущей схеме, функциональность схемы при использовании, как силовых КМОП-транзисторов, так и тринисторов, — не меняется и не ухудшается. Для использования полевых транзисторов в этой схеме не монтируются элементы RAF1, RF1-RF3, VO1, DF1-DF6, RY1, RY2, VF1, VF2. Для использования тиристоров не устанавливаются компоненты R9-R12, Q4, Q5. Конечно же, при выборе силовых компонентов, необходимо учитывать их преимущества относительно конкретного применения. Как известно, при обычном управлении тиристорами могут возникнуть проблемы при их открывании на небольшую (высокоомную) или индуктивную нагрузку. Однако при работе с мощной нагрузкой тиристоры (симисторы) предпочтительнее транзисторов из-за хорошей перегрузочной способности, как по току, так и по напряжению. Кроме того, если схемы управления данных конструкций питать через понижающий трансформатор (с соответствующим напряжением вторичной обмотки), то силовая часть конструкции может быть полностью развязана от схем управления. При использовании транзисторов в качестве силовых компонентов, такая развязка в предлагаемых схемах — невозможна. Схема с «развязанными» от схемы управления транзисторами уже не получится такой же простой и дешевой, как, например, схема с «развязанными» тиристорами.

Сами схемы и применяемые компоненты (см список) предполагают построение регуляторов мощностью до 3-х кВт при использовании тиристоров, 1 кВт при использовании транзисторов и симисторов из списка. Однако, как при макетировании, так и собранные на печатных платах, устройства проверялись лишь при мощностях до 1 кВт.


рис.3 — печатная плата регулятора 1 (вид со стороны установки компонентов — TOP)


рис.4 — печатная плата регулятора 1 (вид стороны пайки — Bottom)


рис. 5 печатная плата регулятора 2 (вид со стороны установки компонентов — TOP)


печатная плата регулятора 2 (вид стороны пайки — Bottom)

Печатные платы обоих регуляторов – двухсторонние. Силовые компоненты расположены в одном ряду для удобного совместного крепления к общему радиатору. В схеме второго регулятора (рис. 2) предусмотрено использование фиксируемой софт-кнопки (контакты S1, S2) включения-выключения устройства. В случае нажатия на кнопку вывод 4 таймера замыкается на общий провод схемы и работа таймера блокируется с обеспечением логического «0» на выводе 3 U1. Отпускание кнопки возобновит работу регулятора. Такую же кнопку «вкл-выкл» можно предусмотреть и в схеме регулятора на рис. 1, включив ее между выводами 5, 6 микросхемы U1 и положительным проводом питания схемы. Тогда, в случае подачи напряжения питания (нажатие кнопки) на выводы 5, 6 U1, работа ШИМ будет блокирована с низким выходным уровнем в точке соединения коллектор Q2- эмиттер Q1.

В качестве регулировочных потенциометров использованы многооборотные подстроечные резисторы, применение которых оправдано в случае использования фиксированных выходных значений регулятора. В этом случае достаточно совместить шлиц переменного резистора с небольшим отверстием в корпусе под тонкую отвертку. Для большинства случаев большего и не надо. Для частых оперативных регулировок регулировочный резистор можно установить на корпусе устройства на возможно минимальном расстоянии от платы регулятора для предотвращения наводок на соединительные провода, идущие к переменному резистору. С проводами до 10 см регулятор работает гарантированно нормально.

В конструкциях регуляторов использованы достаточно распространенные электронные компоненты и возможна их замена на аналогичные детали в большинстве случаев.

Так, например, в схемах регуляторов испытывались в качестве мощных ключей транзисторы IRF840, IRF740, IRFP460, 20N60; тиристоры TYN1225, TYN812, Z0409MF; симисторы BT137-600E. Микросхема К561ТЛ1 заменима на аналогичную импортную CD4093; в качестве транзисторов Q2, 3 схемы второго регулятора работали отечественные КП501А; диоды 1n4007 могут быть заменены на любые кремниевые диоды с рабочим напряжением от 400В и током от 0,5А. АОУ103В применены в схеме только потому, что у меня они были. Они заменимы любыми динисторными оптронами аналогичных импортных серий типа MOC30XX без нулевого детектора. При этом отпадает необходимость в установке диодов с обозначением DF. Списки деталей приведенные ниже следует понимать так, — верхний список элементов — для регулятора 1; нижний, соответственно, — для регулятора 2.

Устройство регулятора мощности своими руками

Регулятор мощности 12 вольт своими руками

Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

Хема регулятора мощности на симисторе

  • металлическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

 регулятор мощности на тиристоре

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2. Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

 регулятор мощности для паяльника своими руками

Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

Читайте также  Схема разводки электрики на кухне

Регулятор мощности на симисторе

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

 регулятор напряжения фазовый

Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

 регулятор напряжения 220в своими руками

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Регулятор мощности своими руками

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Как сделать регулятор мощности на симисторе своими руками: варианты схем

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Схема простого регулятора мощности на симисторе с питанием от 220 В

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Читайте также  Как научиться читать электросхемы?

Схема регулятора мощности для индуктивной нагрузки

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Мощный симисторный регулятор мощности

Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.

Схема мощного симисторного регулятора мощности

Мощный симисторный регулятор мощности на BTA41-600

Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.

Собираем диммер

В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?

BTA41-600

В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.

Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.

4000Вт регулятор

Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А. Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами. Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.

Обратная сторона печатной платы покупного диммера

Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше. И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.

Лужение силовых дорожек

Для сведения, медный провод сечением 2.5мм 2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.

Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.

Диммер

Диммер BTA41-600

Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см 2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов. Температура достигла 90 0 С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу. Иначе получим настоящую печь.

Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.

Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.

Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.

Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.

Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.

О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.

Предохранитель в регуляторе мощности

Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.

Автоматический выключатель на 16 Ампер

В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм 2 .

Тумблер на 25А

Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.

Регулятор мощности на 40А

Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.

Дополнительный резистор

Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».

Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.

Выводы симистора, при его монтаже, рекомендуется делать как можно короче.

Вывод.

Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…

Простой регулятор мощности 3,5 кВт

Часто возникает необходимость регулировать мощность электрического тока. Например, что бы убавить напряжение электролампы и тем самым продлить ей срок службы или плавно менять частоту вращения электродвигателя, так же не лишним будет регулировка температуры жала паяльника и т.д. и т.п. Продолжать можно долго. Выход, конечно, есть, это может быть балластный резистор, ЛАТР, балластный конденсатор, но гораздо более эффективен, на мой взгляд, симисторный регулятор. В энергопотребителях не слишком критичных к форме питающего напряжения это наилучший выбор.

Сразу скажу, что я не большой специалист в данном вопросе, поэтому воспользовавшись интернетом, я был неприятно поражён сложными схемами управления симисторов. Предлагаемые схемы содержат слишком много деталей и, по-моему, устарели. Скажем, зачем городить схемы на транзисторах или микросхемах, когда существуют дешёвые и надёжные динисторы. Допустим симметричный (двунаправленный), динистор DB3 стоит в моём уральском городке всего три рубля. При сегодняшних ценах это даже смешно. А преимуществ, по сравнению с транзисторными схемами, где транзисторы работают в режиме обратимого пробоя (лавинообразно отпирающаяся транзисторная схема), много. Я уже не говорю о микросхемах. Для простого регулятора собирать подобные схемы невыгодно ни в плане экономии средств, ни в плане экономии времени, да и заморачиваться лишний раз не охота. Предлагаемая схема проста, надёжна и доступна для повторения. Собрать её сможет даже человек, не обладающий элементарными базовыми знаниями в электронике.

Современная элементная база позволяет собрать такую схему буквально из нескольких деталей (ушло несколько вечеров, причем львиную часть времени потратил на корпус и слесарку)! Привожу переднюю панель и фото самого регулятора. В продаже такой стоит более 100 баксов. А промышленный прибор легко переваливает за 400 баксов!

Он может пригодиться для регулировки освещения ламп накаливания, регулировки температуры ТЭНов, фенов, тепловых пушек, но не годится для работы на индуктивную ( трансформатор, асинхронный двигатель) или емкостную нагрузку. Симистор моментально выходит из строя.

На всякий случай поясню назначение деталей. Т1 – это симистор, в моём случае я использовал КУ 208, хотя возможно подключить и импортные симисторы (триаки) ВТА, ВТВ, ВТ. Элемент схемы Т – это и есть вышеупомянутый симметричный динистор (диак) импортного производства DB 3 (можно DB 4). По размеру он очень мал, что делает монтаж его очень удобным, я например, в некоторых случаях припаивал его непосредственно к управляющему выводу симистора. Выглядит он так:

Резистор 510.Оm – ограничивает максимальное напряжение на конденсатор 0,1 mkF, то есть если движок переменного резистора поставить в положение 0.Оm, то сопротивление цепи всё равно будет 510.Оm

Справа на схеме резистор на 20 kOm и конденсатор 0.22mkF именуемая RC цепью. RC цепочка, это своеобразная защита симистора от выбросов напряжения при работе на индуктивную нагрузку. То есть если Ваша схема будет регулировать активную нагрузку (лампочка, паяльник, ТЭН и т.д.), то R3 и C можно исключить из схемы, а это делает схему до смешного простой.

Итак, конденсатор 0,1mkF заряжается через резисторы 510.Om и переменный резистор 420kOm, после того, как напряжение на конденсаторе достигнет напряжения открывания динистора DB 3, динистор формирует импульс, открывающий симистор, после чего, при проходе синусоиды, симистор закрывается. Частота открывания-закрывания симистора зависит от напряжения на конденсаторе 0.1 mkF, которое, в свою очередь, зависит от сопротивления переменного резистора. Таким образом, прерывая ток (с большой частотой) схема регулирует мощность в нагрузке. Допустим, если подключить электролампу через диод, мы заставим работать её «в полнакала» и продлим её жизнь, однако не получиться регулировать яркость, да и неприятного мерцания не избежать. Этого недостатка нет в симисторных схемах, так как частота переключения сисмистора слишком высока, и увидеть мерцание лампы человеческому глазу не под силу. При работе на индуктивную нагрузку, например электродвигатель, можно услышать своеобразное «пение», это частота с которой симистор подключает нагрузку к цепи.

Скажу для тех, кто не знает: электродрели прочий электроинструмент с регулировкой вращения так же использует симисторные схемы. Правда, двигатели в вышеперечисленном коллекторные. Но данная схема была испытана и с асинхронным двигателем 220 V(вытяжка в мастерской) и результат был отличный.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: