Схемы управления освещением через контакторы и магнитные пускатели

Схемы управления освещением через контакторы и магнитные пускатели

Для включения магнитных пускателей и контакторов используют кнопочные посты. Это устройства, в которых есть 2 или 3 кнопки типа «Пуск» и «СТОП» или «Вперёд», «Назад» и «СТОП», есть и другие менее распространённые варианты. Кнопки эти представляют собой кнопку без фиксации с нормально-замкнутой и нормально разомкнутой парой контактов.

Внешний вид кнопочного поста

Пускатели и контакторы – это электромагнитные коммутационные приборы. Чтобы его силовые контакты замкнулись, нужно подать напряжение на катушку. Она притянет сердечник (якорь) на котором закреплены контакты (конструкция может различаться). Когда вы снимите напряжение с катушки – прибор отключится, и его силовые контакты разомкнуться.

Пускатель

Кроме силовых в этих приборах есть блок-контакты (обычно несколько их групп). Они не способны выдерживать большую нагрузку, а предназначены для реализации схемы самоподхвата и индикаций. Дело в том, что если просто через кнопочный пост подать напряжение на катушку – аппарат включится, но когда вы отпустите кнопку – сразу же отключится. Это нужно, например, в лебёдках и других грузоподъемных механизмах, но не в цепях, которые работают длительное время без остановок, как свет и электродвигатели вентиляционных систем.

Чтобы этого избежать и нужна схема самоподхвата – нормально-разомкнутый блок контакт подключают параллельно кнопкам «ПУСК» на кнопочном посту.

Обычно такие коммутационные аппараты используют для подключения к сети электроприборов большой мощности: тэнов, двигателей или как в нашем случае больших осветительных установок.

Схема подключения кнопочного поста и её принцип работы

Чтобы подключить контактор или пускатель для управления светом с двух кнопок (как и любой другой системой) нам понадобится:

  1. Кнопочный пост.
  2. Контактор или пускатель с количеством силовых контактов (полюсов) равным количеству фаз.
  3. Три жилы провода.

Подключение контактора к кнопочному посту выполняется так:

Контакты A1 и A2

  1. Определяют напряжение катушки аппарата (обычно 220 или 380).
  2. Фазу берут с силовых контактов (если катушка на 380 – берём две разноименных фазы, если 220 – фазу и ноль).
  3. Подключают фазный провод на нормально-замкнутые контакты кнопки «СТОП».
  4. Последовательно с кнопкой «СТОП» подключают кнопку «ПУСК».
  5. От нормально-разомкнутой пары блок-контактов контактора или пускателя прокладывают два провода к кнопочному посту (от двух контактов соответственно) и подключают их к «ПУСКу», так чтобы её нормально-разомкнутая пара и разомкнутые блок-контакты были подключены параллельно. При этом контакты, на которые теперь пришла фаза, назовем условно «1», а на которые фаза подастся после нажатия на клавишу и срабатывания блок-контактов «2». Важное примечание: к этому шагу у нас уже есть приходящая фаза через нормально-замкнутый «СТОП» на разомкнутый «ПУСК», к этой же цепи подключены и блок-контакты пускателя или контактора.
  6. К блок-контакту «2» подключаем вывод катушки (часто на современных контакторах они обозначаются как A1 и A2).
  7. Второй вывод катушки подключаем к нулю, если она рассчитана на напряжение 220В или к другой фазе – если на 380В соответственно.
  8. Подключаем силовые питающие провода, с этих же клемм обычно берут фазу на кнопочный пост.
  9. Подключают провода от системы освещения (самих осветительных установок).

Всё что описано выше, но в графическом виде вы можете увидеть на этой схеме.

Схема освещения через пускатель

На рисунке дополнительно установлена индикация включения – лампочка в цепи управляющих кнопок и блок-контактов. Она позволит понять, включен ли контактор и наружный свет, не отходя от кнопочного поста.

Примечание: схема управления светом с помощью пускателей также хороша и тем, что можно легко организовать управление светом из двух и более мест – нужно просто добавить кнопочные посты параллельно имеющимся.

Схема с несколькими кнопочными постами

Дополнительные датчики

Как уже было сказано выше, управление освещением с помощью контакторов и пускателей часто используется в паре со средствами автоматики, такими как датчик освещенности и датчик движения. Обычно такие устройства содержат в себе небольшое реле или симистор, но максимальная мощность подключаемой активной нагрузки, как правило, ограничена 1-2 кВт. А о нагрузке с электромагнитными пускорегулирующими аппаратами и речи не стоит вести. Контакты таких реле не предназначены для их питания. К такой нагрузке можно отнести мощные лампы типа ДНаТ, ДРЛ, МГЛ и прочие, которые активно используются в уличных фонарях и прожекторах.

Для этого схема включения освещения контактором или пускателем с помощью датчиков отличается от схемы с кнопочным постом лишь тем, что вместо кнопочного поста мы соединяем катушку коммутационного аппарата с контактом выходного сигнала датчика. Ниже вы видите схему подключения датчика движения и фотореле к контактору на примере однофазной сети:

Подключение светильника через датчик движения и контактор

Подключение светильника через пускатель и фотореле

Схемы можно совместить, организовав принудительное включение освещения, для этого параллельно сигналу с датчика устанавливаем тумблер, который будет подавать фазу на катушку.

Схема с тумблером

Управление светом через фотореле, пускатель и тумблер

Если вы собираетесь использовать датчики в чистом виде – учтите, что они не предназначены для оперирования сигналом напряжением в 220В переменного тока. Поэтому такие устройства как фотореле семейства ФР, которые столь распространены в быту, содержат схему питания датчиков, триггеры или другие пороговые элементы, схемотехнику которых мы в этой статье рассматривать не будем! Если вам интересна эта тема – пишите в комментариях и мы подробно о ней расскажем. Надеемся, вам стало понятно, как производится управление освещением через контактор и магнитный пускатель. Как вы видите, схема не сложная, главное разобраться с особенностями ее работы.

Напоследок рекомендуем посмотреть видео, на котором наглядно демонстрируется применение такой схемы в быту:

Схемы управления освещением через контакторы и магнитные пускатели

Освещение – одна из основ любого помещения. Без него нельзя ни работать, ни безопасно передвигаться. Особенно остро этот вопрос стоит в больших производственных помещениях и на открытом пространстве. Чтобы оперативно включать освещение, можно использовать мощный автомат, но кто имел дело – тот знает, что не у всех хватит сил просто включить большой советский автомат на 200 и более Ампер. Поэтому можно организовать управление освещением через контактор или магнитный пускатель, вручную, либо подключив схему к различным датчикам.

Основы

Для включения магнитных пускателей и контакторов используют кнопочные посты. Это устройства, в которых есть 2 или 3 кнопки типа «Пуск» и «СТОП» или «Вперёд», «Назад» и «СТОП», есть и другие менее распространённые варианты. Кнопки эти представляют собой кнопку без фиксации с нормально-замкнутой и нормально разомкнутой парой контактов.

Схемы управления освещением через контакторы и магнитные пускатели

Пускатели и контакторы – это электромагнитные коммутационные приборы. Чтобы его силовые контакты замкнулись, нужно подать напряжение на катушку. Она притянет сердечник (якорь) на котором закреплены контакты (конструкция может различаться). Когда вы снимите напряжение с катушки – прибор отключится, и его силовые контакты разомкнуться.

Пускатель

Кроме силовых в этих приборах есть блок-контакты (обычно несколько их групп). Они не способны выдерживать большую нагрузку, а предназначены для реализации схемы самоподхвата и индикаций. Дело в том, что если просто через кнопочный пост подать напряжение на катушку – аппарат включится, но когда вы отпустите кнопку – сразу же отключится. Это нужно, например, в лебёдках и других грузоподъемных механизмах, но не в цепях, которые работают длительное время без остановок, как свет и электродвигатели вентиляционных систем.

Чтобы этого избежать и нужна схема самоподхвата – нормально-разомкнутый блок контакт подключают параллельно кнопкам «ПУСК» на кнопочном посту.

Обычно такие коммутационные аппараты используют для подключения к сети электроприборов большой мощности: тэнов, двигателей или как в нашем случае больших осветительных установок.

Схема подключения кнопочного поста и её принцип работы

Чтобы подключить контактор или пускатель для управления светом с двух кнопок (как и любой другой системой) нам понадобится:

Подключение контактора к кнопочному посту выполняется так:

Всё что описано выше, но в графическом виде вы можете увидеть на этой схеме.

Схема освещения через пускатель

На рисунке дополнительно установлена индикация включения – лампочка в цепи управляющих кнопок и блок-контактов. Она позволит понять, включен ли контактор и наружный свет, не отходя от кнопочного поста.

Примечание: схема управления светом с помощью пускателей также хороша и тем, что можно легко организовать управление светом из двух и более мест – нужно просто добавить кнопочные посты параллельно имеющимся.

Схема с несколькими кнопочными постами

Дополнительные датчики

Как уже было сказано выше, управление освещением с помощью контакторов и пускателей часто используется в паре со средствами автоматики, такими как датчик освещенности и датчик движения. Обычно такие устройства содержат в себе небольшое реле или симистор, но максимальная мощность подключаемой активной нагрузки, как правило, ограничена 1-2 кВт. А о нагрузке с электромагнитными пускорегулирующими аппаратами и речи не стоит вести. Контакты таких реле не предназначены для их питания. К такой нагрузке можно отнести мощные лампы типа ДНаТ, ДРЛ, МГЛ и прочие, которые активно используются в уличных фонарях и прожекторах.

Читайте также  Правильно ли составлена схема распределительного щитка для гаража?

Для этого схема включения освещения контактором или пускателем с помощью датчиков отличается от схемы с кнопочным постом лишь тем, что вместо кнопочного поста мы соединяем катушку коммутационного аппарата с контактом выходного сигнала датчика. Ниже вы видите схему подключения датчика движения и фотореле к контактору на примере однофазной сети:

Подключение светильника через датчик движения и контактор

Подключение светильника через пускатель и фотореле

Схемы можно совместить, организовав принудительное включение освещения, для этого параллельно сигналу с датчика устанавливаем тумблер, который будет подавать фазу на катушку.

Схема с тумблером

Управление светом через фотореле, пускатель и тумблер

Если вы собираетесь использовать датчики в чистом виде – учтите, что они не предназначены для оперирования сигналом напряжением в 220В переменного тока. Поэтому такие устройства как фотореле семейства ФР, которые столь распространены в быту, содержат схему питания датчиков, триггеры или другие пороговые элементы, схемотехнику которых мы в этой статье рассматривать не будем! Если вам интересна эта тема – пишите в комментариях и мы подробно о ней расскажем. Надеемся, вам стало понятно, как производится управление освещением через контактор и магнитный пускатель. Как вы видите, схема не сложная, главное разобраться с особенностями ее работы.

Управление освещением кнопочными постами

При больших мощностях осветительных установок для включения светильников используют магнитные пускатели (контакторы). Если предполагается управлять освещением из нескольких мест, то удобным техническим решением является использование кнопочных постов управления (ПУ), содержащих две кнопки без фиксации – одну для включения осветительной группы, другую для ее выключения.

Простейшая схема управления магнитным пускателем при помощи кнопочного поста показана на Рис.1. Для включения освещения используется кнопка SB1 с нормально разомкнутым контактом (при неработающей электроустановке и отсутствии напряжения контакт разомкнут). А для выключения освещения используют нормально замкнутый контакт кнопки SB2.

Схема управления магнитным пускателем

Схема управления магнитным пускателем

Рис.1 Схема управления магнитным пускателем

В этой схеме при замыкании нормально разомкнутого контакта кнопки SB1напряжение подается на управляющую катушку пускателя и он срабатывает. После чего кнопка возвращается в исходное состояние. Но, магнитный пускатель останется включенным, так как его катушка будет находиться под напряжением через вспомогательный контакт самоблокировки КМ1.1, который подключен параллельно контакту кнопки SB1. Для выключения светильников необходимо кратковременно нажать на кнопку SB2, (разомкнуть ее контакт). Автоматический выключатель QF1 защищает групповую линию со светильниками, которая подключается к сети через главные контакты КМ1. Выключатель QF2 защищает цепь катушки пускателя. Сигнальная лампа HL подсвечивает кнопку SB1, когда пускатель включен. Используют кнопочные посты с подсветкой кнопок в тех случаях, когда светильники находятся на значительном удалении и не видны с того места, где установлен пост управления.

Для управления группой светильников из разных мест используют несколько кнопочных постов, у которых кнопки SB1 подключены параллельно, а кнопки SB2 – последовательно. В этом случае при нажатии на любую кнопку SB1 магнитный пускатель сработает и включит осветительную группу. А при нажатии на любую кнопку SB2 ток в цепи управляющей катушки пускателя прервется и магнитный пускатель перейдет в исходной положение.

Управление освещением из трех мест кнопочными постами

Управление освещением из трех мест кнопочными постами

Рис.2 Управление освещением из трех мест кнопочными постами

Одна из таких схем, обеспечивающих управление освещением из трех мест, показана на Рис.2. Здесь использовано три поста управления (ПУ), которые устанавливают в требуемых местах. Количество постов управления может быть практически любым. Необходимо отметить, что для подключения кнопок преимущественно используют контрольные кабели. Недопустимо использовать кабели, в которых жилы с синей (или голубой) изоляцией и изоляцией с желто-зелеными полосами будут использоваться как фазные проводники. Если предполагается использование подсветки кнопок, то в контрольном кабеле нулевой проводник помечают синей изолентой (при отсутствии проводника с синей изоляцией). Для кнопочных постов в металлическом корпусе, имеющих клемму для подключения проводника PE в контрольном кабеле должен быть предусмотрен отдельный проводник.

В системах аварийного освещения контрольные кабели, используемые для подключения постов управления должны иметь исполнение по пожарной безопасности по ГОСТ 31565-2012 , аналогичное исполнению кабелей, используемых для подключения светильников.

На Рис.3 показан план помещения с установленными постами управления. Схема управления содержит шкаф управления освещением ШУО и три поста управления, расположенные вблизи входных дверей.

Расстановка постов управления в помещении

Расстановка постов управления в помещении

Рис. 3 Расстановка постов управления в помещении

Удобнее схему подключения светильников и схему управления освещением показывать на разных листах. Особенно если в помещении несколько групп светильников рабочего и аварийного освещения. Это позволяет «разгрузить» чертежи от большого количества кабелей. Схема управления, показанная на Рис.3 выполнена как иллюстрация в упрощенном варианте, на ней не отображены номера групп, типы и сечения контрольного кабеля, но в рабочей документации эти обозначения на схемах всегда следует показывать. На схеме управления сами светильники можно не отображать.

В случае если расположение постов управления в помещении позволяет проложить кабели управления по одной трассе, то схема подключения может быть существенно упрощена, как показано на Рис.4.

Управление освещением из трех мест кнопочными постами(схема 2)

Управление освещением из трех мест кнопочными постами(схема 2)

Рис. 4 Управление освещением из трех мест кнопочными постами (схема 2)

В этой схеме все посты управления можно подключить одним контрольным кабелем. При отсутствии подсветки кнопок и требования к заземлению корпусов кнопочных постов достаточно кабеля с тремя жилами.

Если в осветительной установке присутствуют однофазные группы светильников, то используют однофазные магнитные пускатели (контакторы).

Все о мастер-выключателе: гасим свет одной кнопкой, схемы подключения

Все о мастер-выключателе: гасим свет одной кнопкой, схемы подключения

Для оптимизации управления осветительными приборами всего дома применяется системный аппарат. Он помогает выключить свет с помощью всего одной кнопки.

Системный аппарат состоит из отдельных элементов:

1) Контактор – электромагнитный размыкатель, который предназначен для удаленного замыкания и размыкания электрических цепей.

2) Управляющий модуль, который состоит из:

  • обычного 2-х клавишного выключателя.
  • сканера электрических ключей (бесконтактный) и карт;
  • Wi-Fi или GSM блок удаленного управления.

3). УЗО – автоматическое устройство, оснащенное механизмом защитного отключения и обеспечивающее безопасность всей системы.

Мастер выключателем подключаем освещение в доме: схема

Для реализации подобных проектов, понадобятся модульные контакторы для мастер-выключателя, например, АBB ЕSВ 20-20.

Буквы и цифры в наименовании в нем имеют конкретное значение. Символы маркировки означают:

  • АBB – название организации, изготовителя прибора.
  • ЕSB – серия размыкателя, имеет бытовое назначение.
  • 20 – величина тока, рассчитанная для контактного элемента, в А.
  • 20-20 – независимые друг от друга замыкающиеся блок-контакты с номинальным током 20 А.

До поступления импульса контактные элементы находятся постоянно в разомкнутом состоянии.

Видео описание

Мастер выключатель. Контактор. Схема подключения.

Схема соединения контактора

Собирается он в следующей последовательности:

  • На одноклавишный переключатель света поступает напряжение.
  • Ток, проходя через выключатель, приходит на разъем А2 на АBB ЕSВ 20-20.
  • Другой его контакт (А1) постоянно соединен с «нулем».

К 1-му разъему замыкателя подключается фазный проводник, а ко 2-му присоединяется провод, соединяющий осветительные приборы.

Система функционирует по следующему принципу – при нажатии на кнопку переключателя света, напряжение приходит на контакт А1, фактически на катушку контактора. Затем, по закону электромагнитной индукции, он становится замкнутым. При отсутствии напряжения контакт А1 находится в разомкнутом состоянии.

После его замыкания к оборудованию поступает электрический ток. Если нажать на кнопку одноклавишного переключателя света повторно, линия обесточивается. Внутри размыкателя соединение разрывается, потребитель отключается от напряжения.

К 3 и 4 разъемам подключается другая группа осветительных приборов с номинальным током до 20А. В общей сложности устройство управления выдерживает нагрузку не больше 9-10 кВт при допустимой величине тока в 40А.

Если собрать схему без контактора, пропустив фазу питающего кабеля, который соединяет все группы светильников, через одноклавишный выключатель, возникнут серьезные проблемы:

  • Создается ограничение максимального тока.

Это величина, которую способен выдержать коммутационный элемент, отключающий свет. Значение для одноклавишного переключателя редко бывает больше 10А.

  • Выключатель быстро выйдет из строя.
Читайте также  Схема подключения контактора к электрокотлу

Это связано с тем, что на нем отсутствуют система защиты контактов. Поэтому подгорают площадки клемм или плавится корпус. Иногда случаются пожары по этой причине.

Мастер-выключатель: гасим свет одной кнопкой

У некоторых жильцов отключение освещения по всей квартире с помощью одной кнопки ассоциируется с системой «Умный дом», поскольку не понятно, как это работает. Если управляем всеми приборами, когда все светильники подключены к одному контроллеру, то самое простое действие — выключение всего света одновременно перед уходом из дома.

Реализовывается такая функция очень просто, для этого не нужен «Умный дом». С этой целью в электрический щиток монтируется контактор, оснащенный возможностью по внешнему сигналу отключать свет во всех помещениях сразу. Некоторые ставят дополнительное устройство на отключаемые розетки.

Контактор, одновременно выполняющий функцию пускателя – это модульный элемент, устанавливаемый на DIN рейку. Механизм по управляющему сигналу отключает и включает мощную нагрузку, например, контактор ABB ESB 24-40.

Схема «отель» и мастер-выключатель

Когда светильников и других электрических приборов в доме много, причем все они нужны, можно обойтись без одновременного их включения и выключения. Это делается за счет сечения проводов и силы тока автоматического выключателя.

Для этого надо устроить электропроводку таким образом, чтобы в принципиальной схеме было предусмотрено несколько контуров, имеющих свои отдельные автоматы. Сделать это не составит сложности. При таком варианте к каждому контуру подключаются конкретные группы электрических приборов. За счет этого при одновременном включении всех устройств, независимо от их мощности, сила тока в автоматических выключателях и электропроводке не выйдет за пределы критических значений. Этот вид электрической схемы в профессиональных кругах называется «отель».

Для реализации понадобится дополнительно купить:

  • немного кабеля (30-40);
  • нужное количество автоматов (зависит от числа контуров);
  • мастер выключатель, который управляет через реле автоматическими коммутаторами.

По внешнему виду – это простая клавиша, располагающаяся у входной двери в квартиру. Такое устройство позволяет за счет единственного щелчка легко гасить свет во всем помещениям или отключать конкретную группу электрических приборов.

Видео описание

Мастер-выключатель света. Гасим свет одним нажатием.

Как оборудовать системный аппарат

Схема подключения мастер-выключателя зависит от того, где планируется его применить. У разных помещений есть свои особенности, поэтому нужен грамотный подход.

На принципиальной схеме автоматический выключатель располагается в начале электрической цепи. По факту размещается в доме радом со счетчиком.

Принцип действия схемы основан на том, что потребитель устанавливает максимально разрешенную мощность электропотребления, которая суммарно требуется для всех приборов, подключенных в сеть. Если параметр превысит допустимую норму, через короткий период времени автоматический выключатель сработает и обесточит помещение полностью.

По причине неосмотрительности подобное решение не устраивает владельца жилья. Выключение света в самое неподходящее время создает определенные проблемы с готовкой еды на электрической плите. Однако такие меры связаны с необходимостью обеспечения пожарной безопасности. В случае короткого замыкания или утечки тока отключение света происходит мгновенно.

Мастер-выключатель света: техническая реализация

По технической реализации существуют 3 ключевых решения.

  • Контактор и мастер-кнопка устанавливаются в электрическую цепь, питающий осветительную группу.

Перед монтажом лучше иметь принципиальную схему перед глазами. При нажатии кнопки выключателя, контактор подает питание от групповой цепи, куда подключены светильники квартиры. Это наиболее популярный вариант.

  • Централизованное включение и отключение света.

Управление освещением происходит с помощью мастер-выключателя, если вся осветительная сеть в доме смонтирована на импульсных реле. Такой вариант более затратный и сложный, используются дополнительно специальные модули.

  • Наиболее функциональное и универсальное решение.

При таком варианте подключения мастер-выключателя используется ПЛК (программируемый логический контроллер). Благодаря программированию есть возможность изменять схему освещения. В зависимости от выбранного оборудования, можно добиться удешевления этого варианта относительно стоимости импульсных реле.

Размещение мастер-выключателей и неотключаемые линии

Системные аппараты обычно располагаются около входа в квартиры, в спальне или рабочем кабинете. Это места, откуда удобнее отключать все световые приборы, а также централизованное управлять шторками.

Для обустройства неотключаемых линий в электрическом щитке для управления отключаемыми цепями используется рубильник или выключатель нагрузки. Такое решение встречается повсюду.

Преимущества рубильников относительно мастер-выключателей:

  • простота;
  • надежность;
  • долговечность;
  • компактность;
  • низкая цена.
  • не удобен в эксплуатации, в отличие от мастер-выключателей;
  • на неотключаемые цепи нужна дополнительная установка освещения;
  • для обеспечения отключения приборов и регулирования подачи тока операции выполняются вручную.

Дополнительное освещение делается по всей линии до электрического щитка, чтобы не возникло проблем в темноте при отключении света по всему дому);

Мастер кнопка – универсальное решение, в нем есть все самое необходимое. Без подхода к выключателям, расположенным по всей квартире, устройство сразу выключает везде свет.

Мастер-выключатели ставить или рубильники зависит от потребностей жильцов. На выбор влияют преимущества и недостатки аппаратов.

Как подсоединить проходной выключатель

В начале и конце электрической цепи применяются проходные выключатели, а в середине линии используется перекрестный переключатель. Бывают и другие решения, но реже.

Преимущество схем управления на проходных выключателях: простота и надежность. Недостатки:

  • невозможно автоматизировать систему управления освещением;
  • нельзя изменить схему через какое-то время;
  • расход кабеля большой.

Иногда реализуется схема управления 2-мя группами осветительных приборов из N-мест на 2-х клавишных проходных элементах. Однако такая схема громоздкая и неудобная в быту. У таких коммутаторов нет фиксированного положения «Включено» и «Выключено».

Как подключить выключатель с одной клавишей

В патроне есть 2 клеммы, в каждый разъем вводится одна из кабельных жил и закрепляется с помощью зажимного винта, затем подключается выключатель. Для этого прибор разбирается отверткой или руками: отсоединяется клавиша, закрепленная на пластмассовых защелках. Если не отщелкивается, нужно подтолкнуть с обратной стороны. После откручивания 2-х винтов снимается декоративная крышка.

Схема подключения сводится к тому, что нужно в разрыв «фазы» установить одноклавишный выключатель.

Как подключить трехклавишный выключатель

Подключение 3-х клавишного выключателя выполняется точно также, как и одно и 2-х клавишного. Различие – в количестве контактов отходящих групп: 1, 2 или 3. Один питающий кабелей присоединяется к входной клемме выключателя, а провод светильников – к контактам «выход». Нулевые проводники всех осветительных приборов объединяются в одну цепь и подключаются к «нулю» в коробке.

Схемы управления освещением через контакторы и магнитные пускатели

Для включения контакторов и магнитных пускателей применяются кнопочные посты. Это аппарат, оснащенный 2-мя кнопками: «Пуск» и «Стоп» или 3-мя: «Вперёд», «Стоп», «Назад». Эти элементы без фиксации, с замкнутыми и разомкнутыми контактами.

Схема управления освещением простая и показана ниже.

Заключение

Существует много удачных решений для мастер-выключателей, позволяющих организовать управление освещением всего дома. В основе всех вариантов лежит использование контактора.

Схемы управления освещением через контакторы и магнитные пускатели

Современные квартиры и дома насыщены различными электроприборами:

  • источники света различной мощности и конфигурации,
  • отопительные приборы,
  • электрические приводы штор, жалюзи и многими другими устройствами.

При этом, привычные нам способы управления ими уже невозможно применять из-за технических ограничений или по причине требований заказчика. В этой статье рассмотрены методы регулирования электроустройств с применением импульсного реле и контактора.

Импульсные реле

Easy 9Импульсное реле серии Easy 9

Импульсные реле хорошо зарекомендовали себя в качестве управляющих устройств в сфере освещения. По сути это реле с механической фиксацией контактов в положение «вкл/выкл», что позволяет после выключения или выключения снять с них напряжение.

Таким образом управление осуществляется импульсом, отсюда и название устройства. Основные преимущества — бесшумность, энергоэффективность, неограниченное количество управляющих точек, возможность координировать мощные нагрузки, безопасность с пожарной точки зрения.

Рассмотрим вариант управления освещением на примере новинки от Schneider Electric — импульсного реле серии Easy 9.

В качестве примера возьмем длинный коридор или лестничный марш. Обычно в таких помещениях необходимы несколько точек управления, которые позволяют включить освещение, когда человек входит с одной стороны коридора и выключить его, когда он уходит с другой стороны. Традиционно такие схемы реализуются с помощью комбинации переключателей, что требует прокладки большого количества кабелей и затратно само по себе т. к. стоимость проходного (перекрестного) переключателя достаточно высока.

При использовании импульсного реле возможно отказаться от дорогостоящих переключателей и заменить их недорогими кнопочными выключателями, как показано на схеме.

Читайте также  СХЕМА ПЛАВНОГО ВКЛЮЧЕНИЯ

СхемаИмпульсное реле в схеме управления освещением

Таких кнопочных выключателей может быть неограниченное количество (если речь идет о выключателях без подсветки), что позволяет создать нужное количество точек управления в зависимости от конкретного помещения.

В цепи управления реле ток протекает лишь в момент подачи импульса управления и не превышает 0,5 А, то их можно прокладывать кабелем небольшого сечения (0,5-0,75 кв. мм.).

В сочетании с доступной ценой импульсного реле Easy 9 такое решение позволяется получить существенную экономию не только за счет стоимости изделий, но и за счет экономии кабеля.

Рычаг на лицевой панели импульсного реле помимо индикации положения реле «включено/выключено» еще и позволяет управлять им в ручном режиме, например, если нужно проверить правильность подключения нагрузки при монтажных и пуско-наладочных работах на объекте.

Контакторы

Помимо импульсных реле, управлять электропотребляющим оборудованием можно и контакторами, которые отличаются способом контроля, основанном на постоянной команде и предпочтительны для нагрузок большей мощности. Например, в новой линейке контакторов Easy 9 SE есть возможность выбрать 2- и 4-поюсные контакторы на токи до 40 А активной нагрузки. Это делает их незаменимым решением в сфере энергоёмкого освещения.

Easy 9 SE

Новая линейка контакторов Easy 9 SE

Обычно контактор используется для управления мощными нагрузками: освещение, вентиляция или обогрев с повышенными показателями энергопотребления. Однако при этом он выступает в роли подконтрольного устройства, а управляет его работой, например, термостат.

Аналогичным образом строятся схемы управления освещением с помощью датчика движения, сумеречного реле (реле освещенности) и многих других подобных сенсоров. Общими для них является то, что управляющее устройство имеет на выходе контакт, замыкание которого активирует контактор и пока контур остаётся замкнутым, устройство продолжает работу. Это, так называемый, постоянный сигнал управления.

СхемаСхема централизованного электроуправления с применением контактора

В современных способах электромонтажа для жилых помещений контактор нашел еще одно интересное применение — в схемах централизованного управления.

К примеру, хозяин, уходя из дома хотел бы иметь возможность гарантированно отключить все электроприборы (за исключением критически важных) с целью обеспечения не только пожарной безопасности жилища, но и энергосбережения. При этом тратить время на обход помещений ему не хочется.

В этом случае в схему электроснабжения дома или квартиры включают контактор, через который запитывают все неприоритетные нагрузки. Для управления им используют обычный выключатель, выполняющий роль универсального «вкл/выкл» всего, что необходимо.

Его устанавливают около выхода. Покидая квартиру или дом, владелец одним нажатием на выключатель деактивирует контактор, обесточивая цепи питания и на этом всё. Второстепенные электроприборы отключены без необходимости отключать каждый отдельно.

Кроме локального контроля электроцепей, контакторы нашли широкое применение в дистанционно управляемых системах, в том числе решениях, использующих удаленное управление по сети Интернет.

Таким образом, современные управляющие функции позволяют решить широкий круг задач в электроустановке, делая дом или квартиру более комфортной и безопасной для проживания средой.

Контакторы – особенности выбора и применение

Контакторы – особенности выбора и применение

Любая электрическая цепь нуждается в управлении. В первую очередь, это, конечно необходимость замыкания и размыкания ее. И способов этого, на самом деле, не так уж и много. Одним из простейших способов управления электрической цепью, является использование рубильников и разнообразных выключателей. Но что делать, если замыкать и размыкать цепь приходится довольно часто? Именно для таких целей идеально подходит контактор. Во-первых, он способен замыкать и размыкать цепь по нескольку тысяч раз в час. Во-вторых, делать это он позволяет дистанционно. Наконец, использование контактора позволяет полностью автоматизировать этот процесс.

Итак, основным назначением контакторов является частое, или регулярное включение/отключение электрических цепей. В этом плане, его применение аналогично применению обычных электромагнитных реле. Однако, использование контакторов имеет свои особенности. Подобно электромагнитному реле, контактор имеет контактную систему, состоящую из подвижных и неподвижных контактов. Кроме этого, контактор может содержать вспомогательные контакты, отвечающие за системы управления и сигнализации. Но основным отличием контактора от реле является наличие дугогасительной камеры, которой оснащены силовые контакты. Именно дугогасительная система при размыкании контактов гасит электрическую дугу.

Как мы уже поняли, основным назначением контактора является замыкание и размыкание электрической цепи, но использоваться этот функционал может для решения достаточно широкого спектра задач – от управления освещением до управления мощными промышленными электродвигателями. Соответственно, требования, предъявляемые к контактору, в зависимости от назначения, будут различаться. Но есть, все-таки, общие критерии, которые помогут в правильном выборе контактора.

Основным параметром при выборе контактора является необходимость выбора допустимой нагрузки. Подбор контактора осуществляется на основе расчетных параметров тока в коммутируемой цепи. При этом необходимо учитывать, что номинальный ток контактора должен быть выше расчетных параметров. То есть, если расчетный ток приближен к номинальному току контактора, то необходимо использовать контактор с характеристиками на порядок выше.

Также нельзя забывать о способности контактора «переносить» пусковые токи, в особенности, если контактор используется для управления мощными промышленными двигателями. Для этого контакторы различаются по категории применения – обозначение АС и номер категории.

Категории применения по переменному току
АС-1 активная или малоиндуктивная нагрузка (cosφ≤0,95)
АС-2 пуск электродвигателей с фазным ротором, торможение противовключением
АС-3 пуск электродвигателей с короткозамкнутым ротором, отключение вращающихся двигателей при номинальной нагрузке
АС-4 пуск электродвигателей с короткозамкнутым ротором, отключение неподвижных или медленно вращающихся электродвигателей, торможение противовключением

Хороший контактор должен обеспечивать не только частоту переключений за определенный период времени, но и определенное количество срабатываний за весь период (коммутационная и механическая износостойкость). По коммутационной износостойкости контакторы могут относиться к одной из трех категорий – А, Б и В. При этом класс «А» — самый высокий, а класс «В» — самый низкий.

Коммутационная износостойкость
А самый высокий, гарантирует от 1.5 млн. до 4 млн. операций срабатывания магнитного пускателя в рабочем режиме
Б средний, модели данного класса выдерживают от 630 тыс. до 1.5 млн. переключений
В самый низкий, количество циклов от 100 тыс. до 500 тыс.

Механическая износостойкость также гарантирует определенное количество циклов срабатываний без ремонта, или замены отдельных деталей. Но при этом необходимо иметь в виду, что расчет механической износостойкости учитывает количество циклов включения/отключения без нагрузки. В соответствии с этим, выбирать контактор по параметрам износостойкости все-таки лучше с небольшим запасом.

Выбор количества полюсов зависит от области применения контактора – постоянный ток, или переменный, однофазный, или трехфазный. Для цепей постоянного тока, а также однофазных цепей переменного тока, как правило, применяются контакторы с одним, или двумя полюсами. Довольно часто в трехфазных сетях используются контакторы с тремя рабочими полюсами, и одним дополнительным, выполняющим функцию блокировочного контакта. На рис.1 показана схема включения двух контакторов с использованием дополнительного контакта, которая исключает возможность включения второго контактора без включения первого.

Рис.1 Схема блокировки двух устройств при помощи контакторов

Схема блокировки двух устройств при помощи контакторов

На рис.2 показана схема включения двух контакторов с блокировкой включения второго контактора при включении первого. При использовании контакторов с напряжением катушки 220В, схемы, практически, не меняются. Только вместо второй фазы используется N.

Рис.2 Схема управления нереверсивным пускателем (контактором). Электрическая блокировка

Схема управления нереверсивным пускателем (контактором). Электрическая блокировка

И, в заключение, один довольно часто возникающий вопрос – чем контактор отличается от магнитного пускателя? Ведь назначение у них одно и то же – управление электрическими цепями.

Во-первых, магнитный пускатель является разновидностью контактора, служащий лишь одной цели – запуск двигателей переменного тока. А вот контактор может использоваться для управления не только силовыми цепями, но и, например, освещением. Конструктивно, контакторы и магнитные пускатели также имеют отличия, определяющие их использование. Например, высокая частота включений/выключений контакторов возможна благодаря наличию дугогасительной камеры. У магнитного пускателя дугогасительная камера отсутствует. Зато пускатель имеет усиленный корпус, позволяющий устанавливать его в любом месте. Ограничением для пускателя является его применение в мощных силовых цепях при большом количестве коммутаций.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: