УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ

Стрелочные измерительные головки998

CP-48-AC-10А, Амперметр стрелочный 10А AC 48х48быстрый просмотр
CP-48-AC-25А, Амперметр стрелочный 25А АС 48х48быстрый просмотр
CP-48-DC-10А, Амперметр стрелочный 10А DC 48х48быстрый просмотр
CP-48-DC-15V, Вольтметр стрелочный 15V DC 48x48быстрый просмотр
CP-48-DC-20А, Амперметр стрелочный 20А DC 48х48быстрый просмотр
CP-48-DC-30V, Вольтметр стрелочный 30V DC 48x48быстрый просмотр
CP-48-DC-30А, Амперметр стрелочный 30А DC 48х48быстрый просмотр
CP-48-DC-50V, Вольтметр стрелочный 50V DC 48x48быстрый просмотр
CP-48-DC-5А, Амперметр стрелочный 5А DC 48х48быстрый просмотр
57861, Амперметр 10А/50Гц (48х48)быстрый просмотр
57902, Амперметр 7.5А (48х48) шунт встроенбыстрый просмотр
57903, Амперметр 10А (48х48) шунт встроенбыстрый просмотр
57904, Амперметр 20А (48х48) без шунтабыстрый просмотр
57905, Амперметр 30А (48х48) без шунтабыстрый просмотр
57911, Вольтметр 15В (48х48)быстрый просмотр
57912, Вольтметр 20В (48х48)быстрый просмотр
57940, Вольтметр 10В (72х72)быстрый просмотр
57958, Амперметр 5А (40х40) без шунтабыстрый просмотр
57959, Амперметр 10А (40х40) без шунтабыстрый просмотр
57960, Амперметр 20А (40х40) без шунтабыстрый просмотр

  • 20
  • 40
  • 60

Стрелочные измерительные головки –это основа классических измерительных приборов для измерения напряжения, тока или частоты сигнала. Отличаются простотой и надежностью, а также отсутствием необходимости собственного источника питания. Так как отображение информации на них происходит в виде движения стрелки точность их измерений уступает цифровым и составляет 1/10 от единицы измерения прибора.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Алматы, Архангельск, Астрахань, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курган, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Стрелочные измерительные головки» вы можете купить оптом и в розницу.

За что любят стрелочные мультиметры

В век цифровых технологий стрелочный мультиметр все еще пользуется спросом. У старшего поколения радиолюбителей до сих пор сохранились «цешки», надежные советские приборы. Верой и правдой служат они своим хозяевам в течение нескольких десятилетий. А новое поколение смотрят на них как на антиквариат и не представляют, как пользоваться стрелочным мультиметром без инструкции. Однако, они обладают рядом свойств, которые позволяют им быть востребованными и в нынешнее время.

Назначение

Стрелочный тестер – это аналоговый прибор, состоящий из стрелочного микроамперметра, набора резисторов и шунтов. Другое его название – авометр (ампер+вольт). Изначально мультиметры выполняли только три функции, измеряли напряжение, ток и сопротивление. Затем набор функций был расширен.

При измерении напряжения к микроамперметру последовательно подсоединяют резисторы большого номинала, для определения тока параллельно к нему подсоединяется шунт, резистор с малым сопротивлением.

При измерениях переменного тока и напряжения дополнительно подключаются диоды для выпрямления входного сигнала. Дополнительные резисторы и шунты имеют высокую точность номинала, так как от этого зависит погрешность стрелочного мультиметра.

Классический советский стрелочный тестер – это модель Ц4352. У него широкий диапазон измерения напряжения (до 1200В), тока (до 15А) и сопротивления (до 5МОм).

Причем этот мультиметр может измерять характеристики как постоянного, так и переменного тока. Сегодня выпускают его модификации, которые пользуются спросом.

Особенности конструкции

Главный элемент стрелочного мультиметра – это магнитоэлектрический измерительный механизм в микроамперметре. От его чувствительности зависят основные характеристики мультиметра.

Конструктивно он представляет собой два постоянных магнита с полюсными наконечниками. Между наконечниками с одинаковыми полюсами имеется цилиндрический зазор, в котором расположен стальной сердечник.

Фактически он плавает в магнитном поле, не касаясь ни одного магнита. В этом зазоре помещается алюминиевый каркас охватывающий сердечник по длине.

Очень тонкой проволокой наматывается обмотка на каркас. Она крепится к оси, которая соединяется растяжками или спиральными пружинками со стрелкой. Измеряемый стрелочным тестером ток подводится к катушке через них.

При прохождении тока по обмотке все витки ее будут испытывать действие электромагнитной силы. Общее воздействие всех сил создаст вращающий момент, который повернет катушку и вместе с ней стрелку. У постоянного магнита его индукция поля тоже постоянна, а число витков обмотки, ее размер и воздушный зазор для конкретного механизма известны.

Поэтому вращающий момент (сила отклонения) стрелки будет зависеть только от силы тока протекающего через катушку. Угол отклонения стрелки мультиметра будет зависеть от жесткости спиральных пружинок.

Вращающий момент должен уравновеситься встречным моментом спиральных пружинок, при этом стрелка замрет. Угол отклонения будет зависеть от силы тока. Поэтому стрелочные тестеры с магнитоэлектрическим механизмом имеют линейную шкалу.

Стабильные показания

Для того чтобы стрелка не болталась, а быстро успокоилась, предусмотрены воздушные и магнитно-индукционный демпферы. Алюминиевый каркас является таким демпфером, создавая вихревые токи при повороте катушки и, согласно правилу Ленца, возникшая сила торможения успокаивает ее таким образом. Для компенсации влияния гравитации предусмотрены противовесы с изменяемым центром масс.

Для устранения влияния температуры устанавливаются резисторы с маленьким температурным коэффициентом изменения сопротивления.

Так как от направления тока зависит направление отклонения стрелки, то при измерениях нужно учитывать полярность измеряемого сигнала. При прямом использовании магнитоэлектрического прибора переменный ток он измерять не сможет, так как суммарный вращающий момент будет равно нулю.

Чтобы все-таки измерить стрелочным мультиметром переменный ток, его сначала выпрямляют с помощью диодов.

Достоинства и недостатки

Аналоговый стрелочный прибор в режиме измерения постоянных величин имеет линейную шкалу – это плюс. А вот при замере сопротивления приходится пользоваться нелинейной шкалой – это минус мультиметра.

Так как стрелка прибора имеет определенную массу, то она инерционна. И это свойство позволяет мультиметру быть прекрасным интегратором. Для восприятия информации это очень удобно.

Мелкие частые колебания она сглаживает, что позволяет сразу оценить предоставляемую информацию. Цифровой мультиметр, при таком же входящем сигнале, выдает мелькание цифр, и восприятие показаний прибора затруднено.

Главные достоинства стрелочного мультиметра:

  • наглядность;
  • качественное восприятие;
  • возможность в целом оценить измеряемый сигнал.

Инерционность стрелки позволяет мультиметру быть устойчивым к помехам. Кроме этого, им удобно следить за изменением тока на заряжающемся конденсаторе. При работе не требуется постоянно смотреть мультиметр, боковым зрением прекрасно фиксируются движения стрелки.

В то же время из-за ограниченности чувствительности магнитоэлектрического механизма прибора нет возможности использовать резисторы с очень большим номиналом.

Это вносит дополнительную погрешность при замерах напряжения. А при измерении тока тестер не может его фиксировать при очень малых номиналах шунта, когда практически весь ток будет проходить через него.

По сравнению с цифровыми тестерами стрелочные более подвержены механическим воздействиям из-за чувствительной измерительной головки, зависят от состояния источников питания, но более экономичны.

Дополнительные возможности

Стрелочным тестером можно измерять емкость конденсаторов, некоторые модели могут мерить температуру, определять исправность полупроводниковых элементов.

Встречаются мультимтеры со встроенным генератором испытательных сигналов на несколько (до десяти) частот.

У нормального производителя в комплект поставки входят:

    прибор;
  • батарея на 1.5 В или 4,5 В;
  • пара измерительных щупов;
  • инструкция по эксплуатации.

При покупке нужно обратить внимание на соответствие стрелочного мультиметра стандарту безопасности 89/336/EEC.

Диапазон проверки напряжения 500-1000 В, тока до 10 А. Стрелочным тестером удобно заниматься прозвонкой проводов, проверять заземление. Некоторые имеют звуковую или световую сигнализацию при достижении сопротивления в 20-30 Ом и ниже, это очень удобно.

Средним стрелочным мультиметором можно провести практически все измерения, необходимые в быту обычному человеку. Их функциональные возможности рассчитаны именно на это.

Измерение напряжения и силы тока

Рассмотрим для примера стрелочный мультиметр m1015b, соответствующий всем стандартам безопасности. На лицевой стороне устройства расположен переключатель функций, настройка нуля, стрелка со шкалами, гнезда для подсоединения измерительных щупов.

Для измерения постоянного напряжения переключатель функций устанавливается в положение DCV. Измерительные щупы подключаются параллельно нагрузке, на которой будет измеряться напряжение.

Показания снимаются по черной шкале V.mA прибора. Если неизвестен диапазон сигнала, нужно выбрать самый большой, потом уже переходить на оптимальный для данного сигнала.

При замере переменного напряжения переключатель переводится в положение АCV. Все остальное делается так же, как и при замере постоянного напряжения.

Чтобы измерить ток, поворотный переключатель устанавливается в положение DCmA, в зависимости от диапазона значений силы тока. Начинают измерения с максимальной шкалы. Показания снимаются по черной шкале.

Измерение сопротивления и децибел

При измерении сопротивления исследуемое устройство или деталь необходимо отключить от электричества. Переключатель режимов переводят в положение Ω.

Специальной кнопкой регулятора нуля стрелка мультиметра совмещается с нулевым делением шкалы измерения сопротивления. Перед этим щупы необходимо закоротить.

Если выставить стрелку в ноль не удается надо заменить батарею. Для этого снимается задняя крышка и производится замена.

После этого щупы подсоединяются к измеряемому сопротивлению. Показания омметра снимаются по зеленой шкале. Коэффициент умножения зависит от выбранного диапазона.

Для измерения дБ переключатель режимов устанавливается в требуемое положение стрелочного мультиметра ACV.

Для диапазона 10 В переменного тока снимают показания на красной шкале dB, для диапазона 50 В нужно ввести поправку +14 в диапазоне -20…22 dB, для 250 В поправка +28 для диапазона 8…50 dB.

Если сигнал имеет постоянную составляющую, необходимо измерения проводить через конденсатор емкостью менее 0,1 мкФ.

При соблюдении правил применения тестер никакого ухода не требует. Может работать при плюсовой температуре до 40 градусов и влажности 75%.

Когда упоминают мультиметр, обычно, имеют в виду компактный мобильный прибор с автономным питанием. Но существуют еще и стационарные стрелочные тестеры.

Набор функций у них может быть такой же, как у переносных или немного шире, а точность измерений, количество диапазонов обязательно выше.

Какой прибор выбрать, цифровой, стрелочный, стационарный или мобильный, зависит от нужд потребителя, но стрелочные мультиметры еще долго будут востребованы.

Стрелочные электроизмерительные приборы

Простые пробники и измеритель RCL, о которых я здесь рассказал, это только часть приборов самой первой необходимости. А как быть с измере­ниями токов и напряжений, без чего нельзя проверить и установить нужный режим работы аппаратуры, с измерением параметров транзисторов, чтобы знать их усилительные свойства? Для таких и ряда других измерений потре­буете» стрелочный измерительный прибор.

Ты хорошо знаешь, что токи измеряют амперметрами, миллиампермет­рами, или микроамперметрами, напряжения — вольтаметрами, а то и милли­вольтметрами. Несмотря на различия в наименованиях, все эти приборы работают принципиально одинаково: отклонение стрелки показывает, что через прибор течет ток. Чем больше ток, тем больше отклонение стрелки прибора А, шкалу прибора, в зависимости от того, для каких измерений он приспо­соблен, градуируют соответственно, в амперах, миллиамперах, вольтах. Такой же прибор можно использовать и в омметре — приборе для прямого (а не косвенного, как в измерителе RCL) измерения сопротивлений цепей, ре­зисторов.

Существует несколько систем стрелочных приборов: электромагнит­ные, магнитоэлектрические, электродинамические. Для ра­диотехнических же измерений применяют главным образом приборы магнито­электрической системы, обладающие по сравнению с приборами других систем рядом преимуществ, в том числе высокой чувствительностью, большой точ­ностью результатов измерений и равномерностью шкал.

Читайте также  Схема расключения двухклавишного выключателя

Чтобы лучше уяснить принцип работы электроизмерительного прибора такой системы, предлагаю провести опыт с моделью этого прибора. Ее конструкция показана на рис. 225. Из тонкого картона вырежь две полоски шириной 12—15 мм и склей из них рамки: квадратную со сторонами длиной 20 мм и прямоугольную со сторонами 30 и 40 мм. Чтобы углы рамки были прямыми, картон с наружной стороны изгибов надрежь ножом. В квадратную рамку вставь ось — швейную иглу длиной 40 мм, проколов ею противополож­ные стороны рамки. Намотай на эту рамку 150 — 200 витков провода ПЭЛ или ПЭВ 0,15 — 0,25, уложив их равными частыми по обе стороны от оси. Чтобы витки не сползали, готовую катушку скрепи кусочками изоляционной ленты или липкой бумаги.

Один конец провода длиной 5 — 6 см получившейся катушки с предвари­тельно удаленной эмалью намотай на иглу и закрепи в ушке. Другой конец такой же длины пропусти петлей через проколы в каркасе и сверни спиралью. В средней части верхней стороны второй рамки закрепи полоску жести, предварительно сделав в ней небольшое углубление для тупого конца иглы; она же будет служить и выводным контактом катушки. Второй, спиралевид­ный конец провода катушки припаяй к жестяной скобке, обжимающей край картона нижней стороны рамки. Изгибая витки спирали, установи катушку так, чтобы ее плоскость была параллельна плоскости внешней рамки. Легко вра­щаясь на оси в обе стороны, катушка под действием пружинящей спирали должна возвращаться в исходное положение.

Помести катушку между полюсами подковообразного магнита и подключи к ней через лампу карманного фонаря батарею 3336Л. Образуется электри­ческая цепь. Лампа загорится, а магнитное поле тока в катушке, взаимодей­ствуя с полем магнита, заставит повернуться ее на некоторый угол. Чем меньше ток в катушке, тем меньше угол поворота катушки. В этом нетрудно убедиться, включая последовательно в цепь катушки куски проволоки сопро­тивлением в несколько ом. Измени включение полюсов батареи на обратное или переверни магнит. Теперь катушка будет поворачиваться в противополож­ном направлении.

К рамке катушки можно приклеить легкую стрелку, а к магниту — полоску плотной бумаги с делениями. Получится модель, с помощью которой можно грубо измерять постоянный ток. А если в цепь включить диод, модель будет реагировать и на переменный ток.

Устройство стрелочного прибора магнитоэлектрической системы — прибо­ров типа М24 и М49 — показано на рис. 226. Измерительный механизм при­бора состоит из неподвижной магнитной системы и подвижной части, связан­ной с отсчетным приспособлением. В магнитную систему входят постоянный магнит 2 с полюсными наконечниками 3 и цилиндрический сердечник 10. Полюсные наконечники и сердечник изготовлены из магнитно-мягкого материала («мягкими» называют сплавы железа, обладающие малым магнитным сопро­тивлением, но сами не намагничивающиеся). Воздушный зазор между полюс­ными наконечниками и сердечником везде одинаков, благодаря чему в зазоре

образуется равномерное магнитное поле, что является обязательным условием для равномерности шкалы.

Подвижная часть механизма прибора состоит из рамки 11, двух кернов — полуосей 5 рамки, двух плоских спиральных пружин 8 и стрелки 1 отсчетного приспособления с противовесами Р. Рамка представляет собой катушку, намотанную изолированным медным или алюминиевым проводом на прямоуголь­ном каркасе из тонкой бумаги или фольги (рамки приборов особо высокой чувствительности бескаркасные). Керны служат осью вращения рамки. Для уменьшения трения концы подпятников 4, на которые опираются керны, выполняют из полудрагоценных камней. Керны прикреплены к рамке с помощью буксов.

Спиральные пружины, изготовляемые обычно из ленты фосфористой бронзы, создают противодействующий момент, который стремится возвратить рамку в исходное положение при ее отклонении. Они, кроме того, используются и как токоотводы. Наружный конец одной из пружин скреплен с корректором.

Корректор, состоящий из эксцентрика 6, укрепленного на корпусе прибора, и рычага 7, соединенного с пружиной, служит для установки стрелки прибора на нулевое деление шкалы. При повороте эксцентрика поворачивается и рычаг, вызывая дополнительное закручивание пружины. Подвижная часть механизма при этом поворачивается, и стрелка отклоняется на соответствующий угол.

Электроизмерительный прибор этой системы, как и его модель, которую, надеюсь, ты испытал, работает следующим образом. Когда через рамку течет ток, вокруг нее образуется магнитное поле. Это поле взаимодействует с полем постоянного магнита, в результате чего рамка вместе со стрелкой поворачи­вается, отклоняясь от первоначального положения. Отклонение стрелки от нулевой отметки будет тем большим, чем больше ток в катушке. При пово­роте рамки спиральные пружины закручиваются. Как только прекращается ток в рамке, пружины возвращают ее, а вместе с нею и стрелку прибора в нулевое положение.

Таким образом, прибор магнитоэлектрической системы является не чем иным, как преобразователем постоянного тока в механическое усилие, повора­чивающее рамку. О величине этого тока судят по углу, на который под его воздействием смогла повернуться рамка.

Основных электрических параметров, по которым можно судить о возмож­ном применении прибора для тех или иных измерений, два: ток полного отклонения стрелки, т. е. наибольший (предельный) ток, при котором стрелка отклоняется до конечной отметки шкалы, и сопротивление рамки при­бора Rи. О первом параметре при­бора обычно говорит его шкала. Так, например, если на шкале напи­сано мкА (микроамперметр) и возле конечной отметки шкалы стоит чис­ло 100, значит, ток полного откло­нения стрелки равен 100 мкА (0,1 мА). Такой прибор можно включать только у ту цепь, ток в которой не превышает 100 мкА. Больший ток может повредить при­бор. Величину второго параметра Rи необходимого при расчете кон­струируемых измерительных при­боров, часто указывают на шкале.

Для комбинированного измерительного прибора, который я буду рекомен­довать для твоей измерительной лаборатории, потребуется микроамперметр на ток 100 — 500 мкА, желательно с большой шкалой, например такой, как М24. Чем меньше ток, на который он рассчитан, и больше шкала, тем точнее будет конструируемый на его базе измерительный прибор.

Как узнать систему данного прибора, не разбирая его? Для этого доста­точно взглянуть на условный знак на шкале. Если он изображает подково­образный магнит с прямоугольником между его полюсами, значит, прибор магнитоэлектрической системы с подвижной рамкой. Рядом с ним еще знак, указывающий положение прибора, в котором он должен находиться при изме­рениях. Если не придерживаться этого указания, то прибор будет давать неточные показания.

Эти и некоторые другие условные обозначения на шкалах приборов изображены на рис. 227. Так, например, прибор М24, внешний вид которого показан на рис. 226, является микроамперметром (обозначение мкА) и рассчитан для измерения постоянных токов не более чем до 100 мкА, т.е. до 0,1 мА. Сопротивление его рамки, судя по надписи на шкале, 720 Ом. Именно такой микроамперметр я и буду рекомендовать для твоего комбинированного изме­рительного прибора. Если такой микроамперметр использовался ранее как миллиамперметр, то на его шкале была бы надпись тA, как амперметр — буква А, как вольтметр — буква V.

Еще раз подчеркиваю: независимо от внешнего вида и названия механизмы и принципы работы этих приборов совершенно одинаковы и отличаются они один от другого в основном только токами, при которых их стрелки откло­няются на всю шкалу. Если магнитоэлектрический прибор используют для измерения сравнительно больших токов, например в амперметре, параллельно рамке присоединяют резистор, называемый шунтом (рис. 228, а). Сопротивление шунта Rш подбирают таким, чтобы через него шел основной ток, а через измерительный прибор ИП — только часть измеряемого тока. Если из такого прибора удалить шунт, то предельный ток, который можно будет им измерять, уменьшится.

В том случае, когда магнитоэлектрический прибор используют в вольт­метре, последовательно с его катушкой включают добавочный резистор Rд (рис. 228, б). Этот резистор ограничивает ток, проходящий через прибор, повышая общее сопротивление прибора.

Шунты и добавочные резисторы могут находиться как внутри корпусов приборов (внутренние), так и снаружи (внешние). Чтобы амперметр, миллиамперметр или вольтметр превратить в микроамперметр, иногда достаточно изъять из него шунт или дополнительный резистор.

Именно такой, бывший в употреблении прибор магнитоэлектрической системы может оказаться в твоем распоряжении. И если его основные пара­метры Iи и Ra неизвестны, то измерить их придется самому. Для этого потребуются: гальванический элемент 332 или 343, образцовый (т.е. эталонный) миллиамперметр на ток 1—2 мА, переменный резистор сопротивлением 5 — 10 кОм и постоянный резистор, сопротивление которого надо рассчитать. Постоянный резистор (назовем его добавочным) нужен для ограничения тока в измерительной цепи, в которую будешь включать неизвестный прибор. Если такого резистора не будет, а ток в измерительной цепи окажется значительно больше тока Iи проверяемого прибора, то его стрелка, резко отклонившись за пределы шкалы, может погнуться. Если ток очень велик, то может даже сгореть обмотка рамки.

Сопротивление добавочного резистора рассчитай, пользуясь законом Ома. Поначалу, в порядке страховки, полагай, что /и проверяемого прибора не превышает 50 мкА. Тогда при напряжении источника питания 1,5 В (один элемент) сопротивление этого резистора должно быть около 30 кОм (R =1,5/0,05 мА= 30 кОм).

Проверяемый измерительный прибор ИП образцовый миллиамперметр ИП0, переменный регулировочный резистор Rp и добавочный резистор Rд соедини последовательно, как показано на рис. 229. Проверь, нет ли ошибок полярности соединения зажимов приборов. Движок резистора Rp поставь в положение наибольшего сопротивления (по схеме — в крайнее нижнее) и только после этого включай в цепь элемент Э — стрелки обоих приборов должны отклониться1 на какой-то угол. Теперь постепенно уменьшай введенное в цепь сопротивление переменного резистора. При этом стрелки приборов

будут все более удаляться от нулевых отметок их шкал. Заменяя добавочный резистор Rд резисторами меньшего номинала и изменяя сопротивление пере­менного резистора, добейся в цепи такого тока, при котором стрелка прове­ряемого прибора установится точно против конечной отметки шкалы. Значе­ние этого тока, отсчитанное по шкале образцового миллиамперметра, и будет параметром I/н, т. е. током полного отклонения стрелки неизвестного прибора. Запомни его значение.

Теперь измерь сопротивление рамки. Сначала, как и при измерении пара­метра /н, переменным резистором установи стрелку проверяемого прибора на конечную отметку шкалы и запиши показание образцового миллиампер­метра. После этого подключи параллельно проверяемому прибору переменный резистор сопротивления 1,5 — 3 кОм (на рис. 229 он показан штриховыми линиями и обозначен Кш). Подбери такое его сопротивление, чтобы ток через прибор ИПп уменьшился вдвое. При этом общее сопротивление цепи умень­шится, а ток в ней увеличится. Резистором Rp установи в цепи (по милли­амперметру) начальный ток и точнее подбери сопротивление резистора Rш добиваясь установки стрелки микроамперметра точно против отметки половины шкалы. Параметр Ru твоего микроамперметра будет равен сопротивлению введенной части резистора Rш. Измерить это сопротивление можно измери­телем RCL или омметром.

Читайте также  Схема подключения греющего кабеля теплого пола

Прибор для проверки оксидных конденсаторов на ЭПС (ESR)

Прибор для проверки оксидных конденсаторовПроблема быстрого контроля исправности оксидных конден­саторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируе­мой аппаратуры. Предлагается еще один вариант простого при­бора, аналогичного уже описанному в «Радио», но с использова­нием стрелочного индикатора.

Многих радиолюбителей, да и про­фессиональных мастеров по ре­монту радио- и телеаппаратуры, на­верняка заинтересовала статья Р. Хафизова «Пробник оксидных конденса­торов» в журнале «Радио» (2003, № 10, с. 21). Общеизвестный метод проверки с помощью омметра, позво­ляя приблизительно оценить емкость и измерить утечку оксидных конден­саторов, далеко не всегда дает пол­ную информацию об их качестве. Опе­ративная проверка непосредственно на плате бывает затруднена из-за влияния элементов устройства. Осо­бенно это касается наиболее часто используемых конденсаторов емкос­тью от единиц до нескольких десятков микрофарад.

После прочтения указанной статьи сразу же решил сделать такой прибор, но, как нередко бывает, под рукой не оказалось нужных микросхем. Поэтому вместо микросхемы К561ТЛ1 приме­нил, как мне кажется, более распрост­раненную К561ЛА7, стабилитрон КС127Д заменил на КС133А, вместо светодиодного индикатора использо­вал стрелочный индикатор уровня М68501 от магнитофона.

Применение стрелочного индикато­ра позволило сделать прибор более точным, достаточно компактным и бо­лее экономичным. Ток потребления не зависит от режима работы и составля­ет около 1 мА, что дает возможность использовать малогабаритный источ­ник питания — батарею из трех миниа­тюрных дисковых элементов для ла­зерной указки.

Несколько измененная схема при­ведена на рис. 1. Прибор позволяет с допустимой для пробника точностью оценивать эквивалентное последовательное сопротивление (ЭПС) конден­сатора в пределах от 2 до 50 Ом и ем­кость от 5 до 50 мкФ.

Прибор для проверки оксидных конденсаторов

Конструктивно прибор может быть выполнен в виде мини-тестера с вы­носными щупами и выключателем пи­тания с фиксацией либо как пробник с установкой коротких заостренных щупов и кнопочным включением пита­ния, что существенно увеличит срок службы батареи.

В данном варианте размеры корпу­са составляют 90 x 45 x 20 мм. Индика­тор расположен с левой стороны попе­рек корпуса. Его магнитная система вставлена в отверстие в корпусе, а сам он приклеен к корпусу с внешней сто­роны. Монтаж элементов прибора вы­полнен на печатной плате, чертеж ко­торой приведен на рис. 2

Детали и заменаПрибор для проверки оксидных конденсаторов

Для выбора вида измерений ис­пользован переключатель SA1 с фик­сацией из серии ПКН. Выключатель питания SA2 — миниатюрный движко­вый или кнопочный, расположен с внешней стороны корпуса рядом с индикатором.

Вместо указанной на схеме микро­схемы можно использовать К561ЛЕ5, аналогичные серии К176 или импортный аналог CD4011BE.

K561LE5 Прибор для проверки оксидных конденсаторов на ЭПС (ESR)Транзистор КТ315Б можно заменить любым маломощным транзистором структуры п-p-n с коэффициентом передачи тока базы не менее 100 или импортным аналогом С1815. Конденсаторы — малогабаритные керамические, резис­торы — мощностью 0,125 — 0,25 Вт. Ок­сидный конденсатор — К50-16 или импортный. Диоды VD2—VD5 — любые германиевые высокочастотные. Тип стрелочного индикатора сущест­венного значения не имеет.

Настройка прибора

Налаживание прибора заключается в установке частоты генератора в пре­делах 60…80 кГц для измерения ЭПС и 800… 1000 Гц для измерения емкости путем подбора резистора R2 и соот­ветственно С2 и С1, а также в установ­ке стрелки индикатора на конец шкалы в режиме холостого хода подбором ре­зисторов R4, R5, R8. Предварительно резистором R6 выставляют постоян­ное напряжение на коллекторе транзи­стора, примерно равное половине на­пряжения питания.

Градуировка шкалы не составит большого труда, так как пластмассо­вые индикаторы уровня легко вскры­ваются: достаточно по периметру крышки «пройтись» лезвием ножа. На место старой шкалы наклеивают полоску бумаги, на которую затем на­носят соответствующие риски и над­писи. После градуировки шкалы крышку устанавливают на место и фиксируют клеем.

Нелинейность шкалы таких индика­торов играет положительную роль, позволяя несколько расширить диапа­зон измерений. Градуировка шкалы электрической емкости производи­лась путем усреднения замеров не­скольких новых конденсаторов одного номинала (по возможности с малым допуском), для градуировки шкалы ЭПС были использованы обычные не­проволочные резисторы.

После изготовления прибора была проведена проверка всего личного запаса оксидных конденсаторов. В результате более 30 % из них при­шлось выбросить. Далее прибор был опробован при поиске неисправности в мониторе, в котором не включалась строчная развертка. Этот монитор по­бывал уже у двух мастеров и был воз­вращен назад ввиду «отсутствия элек­трической схемы и сложности ремон­та». В течение нескольких минут ока­залось возможным проверить ЭПС и емкость всех имеющихся на плате оксидных конденсаторов, среди кото­рых был обнаружен один с завышен­ным значением ЭПС и заниженной емкостью. После его замены монитор заработал!

Автор уверен, что подобный прибор займет достойное место в арсенале измерительных приборов как радиолюбителей, так и профессионалов.

Редактор — А. Соколов, графика — Ю. Андреев

Вариант изготовленной печатной платы прибора

Прибор для проверки оксидных конденсаторов на ЭПС (ESR)

Вид со стороны дорожек

Прибор для проверки оксидных конденсаторов на ЭПС (ESR)

Набор для самостоятельной сборки прибора Вы можете купить на нашем сайте «Мастер» (В наборе печатная плата и все детали, кроме измерительной головки)

Вариант внешнего вида прибора

Прибор для проверки оксидных конденсаторов на ЭПС (ESR)

От редакции журнала «Радио». Эквивалентное по­следовательное сопротивление (ЭПС, а в англоязычной терминологии — ESR) конденсатора зависит от многих факто­ров: его типа, емкости, номинального напряжения, частоты, на которой про­водят измерения, и т. д. Например, ЭПС танталовых конденсаторов для поверх­ностного монтажа емкостью от 4,7 до 47 мкФ на напряжение от 10 до 35 В, измеренное на частоте 100 кГц, нахо­дится в пределах от 0,9 до 5 Ом, причем оно увеличивается с уменьшением емкости и номинального напряжения. У алюминиевых конденсаторов К50-38 емкостью от 4,7 до 47 мкФ на напряже­ние от 6,3 до 160 В ЭПС, также изме­ренное на частоте 100 кГц, увеличива­ется от 0,5 (47 мкФ х 160 В) до 5 Ом (47мкФх6,ЗВ) и от 4,5 (4,7мкФх160В) до 14 Ом (4,7 мкФ х 100 В). Поэтому универсального критерия оценки при­годности конденсатора в зависимости от значения ЭПС не существует реше­ние по отбраковке следует принимать в каждом конкретном случае.

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Пробник оптопар и таймеров на «скорую руку»

Пробник оптопар и таймеров на "скорую руку"Пришла очередная посылка из Китая с оптопарами РС817 и таймерами NE555.

Захотелось проверить присланное, чтобы быть уверенным в их годности.

Данная схема пробника поможет в быстрой проверке уже имеющихся в наличии оптопар и таймеров, а также при ремонте радиоаппаратуры.

Индикаторы напряжения в бортовой сети автомобиля

Описываемые далее устройства предназначены для допускового контроля напряжения в бортовой сети автомобиля с номинальным напряжением 12 В, хотя могут использоваться и в других случаях. Они не отображают точного значения напряжения, а лишь указывают, находится ли оно в требуемых пределах. Например, в индикаторе, схема которого показана на рис. а ниже, Подробнее…

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ ПЕРВОЙ НЕОБХОДИМОСТИБез измерительных приборов, хотя бы простейших, трудно, а подчас невоз­можно проверить деталь, электрическую цепь, добиться высококачественной ра­боты того или иного радиотехническо­го устройства. И если не понять этой истины и игнорировать измерения, то лучше вообще не начинать заниматься конструированием усилителей, прием­ников — нет смысла попусту тратить время, заведомо портить транзисторы, диоды, другие детали и материалы. Без измерительных приборов даже от простейшего транзисторного усилителя не удастся добиться нормальной ра­боты. Подробнее…

ESR / ЭПС измеритель на стрелочном индикаторе М4761

Сейчас трудно представить ремонтника без такого прибора, причем каждый по-разному приходит к «своей» схеме.

Давным-давно для проверки электролитов я пользовался стрелочным мультиметром, включенным в режиме омметра. Потом появился С-метр, и этого хватало, как говорится, «выше крыши». Нынешние же реалии (развитие импульсной техники) предъявляют совсем другие требования. Конденсаторы, проверенные старыми тестерами наотрез отказываются работать в современных схемах.

Содержание / Contents

↑ Очень немного теории

Идеальный конденсатор при работе в цепи переменного тока имеет только реактивное (емкостное) сопротивление. Реальный же конденсатор, можно представить в виде идеального конденсатора и последовательно соединенного с ним резистора. Этот резистор называют эквивалентным последовательным сопротивлением конденсатора (далее ЭПС). При работе конденсатора в силовых импульсных устройствах ему приходиться очень быстро заряжаться-разряжаться, это сопровождается протеканием через конденсатор значительных реактивных токов. Наличие ЭПС приводит к выделению тепловой энергии внутри такого конденсатора, что в свою очередь приводит к нарушению уплотнений, испарению электролита и еще большему увеличению ЭПС. Со временем такой конденсатор становится совсем непригодным для работы. Электрическая емкость такого конденсатора может при этом измениться незначительно. Поскольку ЭПС имеет нормированные значения, неисправный конденсатор можно легко вычислить при помощи простейшего ЭПС-метра.

↑ Принципиальная схема

Чем я руководствовался при выборе схемы? Хотелось, чтобы это был малогабаритный прибор с автономным питанием, очень простой, собранный из доступных деталей.
Конструкции на МК были отвергнуты сразу – из-за неоправданной сложности. Конечно, это выглядит очень эффектно, но зачем мерить ЭПС до третьего знака после запятой, если точность измерений для определения дефектных конденсаторов особой роли не играет. Вполне допустимой можно считать погрешность до 1,5. 2 раз. Проверенные конденсаторы при этом можно условно разделить на три группы: хорошие – сомнительные — плохие.

Как обычно, перед воплощением проекта в «железо», прорабатывались литературные и интернет-источники по заданным критериям. Варианты ЭПС-метров с применением индуктивностей (частотозадающие контуры, разделительные трансформаторы) после сборки в макете тоже были решительно отвергнуты. Выяснилось, что у таких устройств «под нагрузкой» меняется форма и частота измерительного сигнала, что влияет на достоверность измерений. Кроме того, скажу вам, это довольно утомительное занятие – мотать обмотки на малогабаритных колечках.
В результате проб и ошибок остановился на слегка доработанном варианте ЭПС-метра из «Радио» №8 за 2008г.

Принцип работы конструкции основан на измерении падения напряжения достаточно большой частоты на проверяемом конденсаторе. Условно считается, что в этом случае ёмкостное сопротивление конденсатора значительно меньше ЭПС и, стало быть, падение напряжения пропорционально ЭПС.

На микросхеме DD1 собран задающий генератор, элементы INV4…INV6 буферизируют сигнал генератора. Цепочка R3, C2 сглаживает фронты выходного сигнала генератора, считается, что такой сигнал лучше подходит для тестирования конденсаторов. R4, R5 – измерительный делитель напряжения. Тестовое напряжение выделяется на резисторе R5, усиливается элементами DA1.1 и DA1.2 и подается на измерительную головку, вызывая полное отклонение стрелки. При подключении тестируемого конденсатора к щупам Х1, Х2 происходит шунтирование резистора R5 по переменному току и, как следствие, уменьшению напряжения на нем. Изменение напряжения на резисторе R5 вызывает пропорциональное отклонение стрелки измерительной головки. Диоды VD1, VD2 защищают прибор в случае подключения к неразряженным конденсаторам. Применение стабилизатора напряжения VR1 позволило добиться долговременной стабильности показаний прибора в процессе разрядки гальванического элемента. Рабочее напряжение на измерительных щупах Х1, Х2 составляет порядка 40..50 мВ, что позволяет проверять конденсаторы не выпаивая из печатной платы.

Читайте также  Схема подключения дифференциального автомата

↑ Основные технические характеристики

Верхний предел измеряемого сопротивления, Ом. 10
Рабочая частота, кГц. 100
Потребляемый ток, мА. 10
Почему именно 100 кГц? Потому что именно эту частоту обычно указывают производители конденсаторов в описании своей продукции.

↑ Конструкция

Его особенность в том, что он имеет логарифмическую характеристику из-за особенностей магнитной системы. И если в других конструкциях его применение ограничено, то здесь он как нельзя кстати: характеристика в начале растянутая, а в конце шкалы сжатая – то, что нам нужно.

В качестве корпуса решил применить корпус от неисправного китайского тестера, вот такой:

Их тоже поднакопилась пара штук.

Адаптируем наш индикатор, выпилив из корпуса все «ненужные» запчасти.

↑ Градуировка индикатора

Изначально прибор собирался мной для работы. После того как я оценил его в действии, на следующий день, был собран второй экземпляр – для дома. Так что можно сказать, что конструкция имеет высокую повторяемость. :yes:

Как проверить конденсатор мультиметром, пошаговая инструкция

Приветствую вас на своем блоге, друзья! После публикации статей про мультиметры появилась необходимость подробнее рассказать о том, как проверять конденсаторы . Известно, что конденсатор — это распространенная деталь в любой электронной конструкции, но в отличие от сопротивлений, диодов или транзисторов проверка обычным мультиметром вызывает много вопросов. Сегодня в выпуске:

Мастера и радиолюбители знают, что электронные детальки сегодня становятся все меньше и меньше в размерах. К тому же, маркировка на них не всегда видна, и узнать емкость по маркировке становиться довольно затруднительно.

и нужную, а если это SMD деталь — по внешнему виду уже бывает трудно понять, что у тебя сейчас перед глазами. Слишком разнообразны стали электронные устройства и компоненты их наполняющие.

Сразу оговоримся — обычные тестеры не дают исчерпывающей информации о конденсаторе. Здесь нужен мультиметр в котором есть соответствующая функция. Или универсальныый прибор, который иземеряет и определяет большинство распростроненных деталей. Есть отельный класс приборов, которые меряют только емкости. Они точны, но дороги. Мы сегодня познакомимся с мультиметром в котором есть функция проверки конденсаторов и унивесальным елф метром, который подходит и для проверки конденсаторов

Как проверить конденсатор цифровым тестером на пробой

Начнем с самого простого. Пробитый конденсатор образуется, если на него подали слишком большое напряжение. Для начала проводим визуальный осмотр. Все «пробитые» конденсаторы имеют на корпусе следы воздействия излишней силы тока — пластмассовые корпус — оплавлен:

На металлическом корпусе — так же дыры или ожоги:

На пленочном конденсаторе так же можно безошибочно определить пробой. А вот SMD- кондесатор проще рассматривать под лупой, а иногда и под микроскопом:

В случае, когда не удается визуально определить пробит конденсатор или нет — на помощь приходит обычный мультиметр. Здесь нужно перевести его в режим измерения сопротивления. Природа конденсатора такова, что если он исправен — его сопротивление будет бесконечным, прибор покажет единицу. Поэтому переводим его в самый максимальный режим (или в режим проверки диодов) и промеряем. По мере того как конденсатор будет заряжаться сопротивление будет расти, пока не дойдет до единицы:

При измерении не касайтесь пальцами контактов конденсатора. Наше тело — носитель электричества, конденсатор это почувствует и измерения будут уже не точными и не такими быстрыми. Лучше всего для проверки деталей использовать щупы для мультиметра с зажимами типа «крокодил».

Если конденсатор пробит, то он будет вести себя как обычный электрический провод. Сопротивление его не будет бесконечным, а если переключить мультиметр в режим прозвонки , то иногда такой конденсатор может даже и «зазвенеть».

Еще одной неисправностью конденсатора, которая фиксируется визуально является вздутие корпуса. Эта особенность присуща так называемым электролитическим конденсаторам. Они имеют полярные контакты для подключения и внутри есть электролит. Со временем (а так же при частых перегреавах) электролит начинает испаряться. Корпуса электролитических конденсаторов делают герметичными. Пары электролита сначала раздувают корпус, а потом уходят постепенно через образовавшиеся щели. Конденсатор теряет емкость, «высыхает» и перестает обеспечивать заданные характеристики.

Как проверить конденсатор мультиметром пошаговая инструкция

На исправность конденсаторы проверить легко. У меня мультиметр модели Mastech MS8260G, у него есть функция измерения емкости конденсаторов. Правда не всех, у этого прибора ограниченный диапазон измерения емкости. Но некоторые конденсаторы он меряет. Если у Вас есть такой мультиметр, то по маркировке определите его емкость и промеряйте далее конденсатор мультиметром.

Если мультиметр показывает емкость такую же (или с отклонением не более 30 %) от той, какая указана на корпусе, то он исправен. Если проверяете полярный электролитический конденсатор, то при измерении нужно соблюдать полярность.

При проверке конденсаторов в высоковольтных устройствах (блоках питания) соблюдайте осторожность. Измерять нужно только полностью разряженный конденсатор. Разрядить его можно замкнув его контакты отверткой, а в отдельных случаях через резистор, чтобы исключить образование искры. Впаивать конденсатор так же нужно полностью разряженным.

Если у Вас стрелочный прибор, то проверяем конденсатор так. Переключаем прибор в режим измерения сопротивления. Подсоединив контакты конденсатора к мультиметру, смотрим на поведение стрелки прибора. Желательно под рукой иметь заведомо исправный конденсатор такой же емкости в качестве эталона .Сравнивая поведение стрелки с эталоном получаем результат:

Еще хотелось бы сказать пару слов о другом замечательном приборе, который идеально подходит для определения исправности большинства конденсаторов. Этот прибор является по сути определителем элементов. Это особенно актуально в наше время, когда по внешнему виду уже бывает трудно определить что за деталь в руках.

Прибор этот недорог, но определяет емкости конденсаторов, их ESR, исправность диодов, транзисторов, катушек, тиристоров, стабилизаторов. И резисторов. Множества резисторов. Есть у этого прибора и площадка для проверки SMD элементов.

Работает прибор от батареи типа «Крона». Площадка в которую вставляется деталь зажимается рычажком, который обеспечивает надежный контакт. Я слегка доработал прибор. Во-первых зажим у меня начал изнашиваться — я уже проверил много выпаянных элементов. Требуются длинные выводы, а у выпаянных деталей выводы уже обрезаны, короткие.

Поэтому я купил несколько разноцветных маленьких зажимов типа «крокодил», припаял их на провода, а провода к контактам с обратной стороны зажима на приборе. Стало удобнее проверять детали, я так раскидал целую коробку выпаянных сопротивлений, диодов, конденсаторов по номиналам. Думаю даже подпаять туда пару щупов — как у обычного мультиметра. А зажим использовать стал иногда — для проверки новых купленных деталей.

Во — вторых пока я проверял детали батарейка подсела. Поэтому я решил и здесь ввести усовершенствования. Не выпаивая разъема для «Кроны» я на те же места подпаял блок питания от какого то приборчика напряжением 9 в и 0,5 А. Можно было приделать и штекер, я его не стал искать, припаял напрямую, а чтобы провода не болтались, использовал стяжки и термоклей:

В — третьих прибор выглядел после распаковки посылки очень хрупким. То ли экономят китайцы, то ли не заморачиваются особо на мелочах. Есть сейчас версии этого прибора в корпусе, но люди все равно дорабатывают.

И я поместил его на пластмассовый корпус на саморезы — благо в плате прибора оказались под них отверстия. Осталось еще придумать прозрачную крышку на дисплей, но пока не подобрал подходящую. В итоге у меня получился вот такой девайс. На видео продемонстрирую его возможности по проверке конденсаторов:

Как проверить конденсатор мультиметром не выпаивая, на плате

Честно говоря желательно все же выпаивать детали. Если схема простая, можно попробовать перерезать контактные дорожки скальпелем — те которые ведут к конденсатору, около его ножек.

Промеряем его емкость как обычно, потом паяльником залуживаем дорожки, порезы заполняются оловом, дорожка восстановлена. Я так проверил электролитический кондер на плате моим универсальным тестером, благо тут полярность не нужно соблюдать, что удобно:

Еще один способ проверки конденсаторов на плате это — пропайка или прогрев. Некоторые неисправные электролитические конденсаторы начинают снова работать если их контакты хорошенько пропаять. Сам конденсатор прогревается при этом, после этого устройство начинает работать. Если такое случилось, нужно все равно выпаять этот конденсатор и заменить на новый.

Если есть схема устройства на которой указаны напряжения или в опорных точках — то это самый правильный вариант проверки. Сняв показания с этих точек и сверив их с теми что на схеме по цепочке можем проверить элементы схемы. А на платах различных устройств так же есть контрольные точки, по которым мастер и «вычисляет» неисправные компоненты:

Для получения исчерпывающих характеристик снова подключаем наш универсальный прибор. У конденсатора есть такая важная характеристика — его эквивалентное последовательное сопротивление (ESR). Не будем сегодня углубляться в эту тему, скажу лишь, что наш прибор прекрасно «видит» эту характеристику.

Если величина ESR превышает 5 ом, то даже при отсутствии внешних признаков (вздутие, пробой) такой конденсатор нужно выпаивать и менять на новый. Опять же для чистоты эксперимента можно промерять сначала исправный конденсатор и взять его характеристики как эталонные.

Важно! При снятии характеристик нужно помнить что полученная ESR (так же как и емкость) зависит от того, как соединены конденсаторы между собой, последовательно или параллельно. При измерении будут погрешности ввиду того, что током от прибора будут запитываться и другие элементы схемы.

Заказать тестер

Проверяем конденсатор мультиметром на работоспособность на двигателе

Для автомобилистов так же будет интересно узнать, как проверить подозрительный кондёр. Ввиду того, что генератор вырабатывает ток, в пространство генерируются помехи. Для подавления помех на генератор (а так же и на трамблеры) ставят конденсаторы. Искры получаются не такими злыми, помех меньше. Со временем конденсатор может выйти из строя. Смотрим видео, как этот конденсатор можно заменить другим.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: