Выбираем блок питания для светодиодной ленты

Подбор блоков питания для светодиодной ленты.

Для правильного подбора блока питания (БП) для системы светодиодной подсветки необходимо знать параметры подключаемой светодиодной ленты и параметры предлагаемых блоков питания.

Первый параметр ленты, влияющий на выбор БП – напряжение питания ленты. Чаще всего это 12 или 24 вольта. На какое напряжение рассчитана лента, на такое же напряжение выбирается и блок питания.

Второй параметр ленты, требующийся нам для расчета блока питания – потребляемая мощность на 1 метр ленты. Этот параметр обязательно приводится добросовестным производителем в характеристиках ленты и обычно обозначается на упаковке ленты. Мощность светодиодных лент, имеющихся в нашем ассортименте, варьируется в диапазоне от 4.2 до 31 Вт/м. Обычно, чем выше потребляемая мощность ленты, тем она ярче светит. Правда, тут вносит неоднозначность такой показатель как КПД, но на приводимый расчет блока питания он не влияет, поэтому принимать во внимание сейчас мы его не будем.

Следующий показатель – длина подключаемой к БП ленты. Тут все просто. Длина – есть длина. Измеряется в метрах.

С лентой разобрались, теперь разбираемся с блоками питания. Основные характеристики БП – выходное напряжение, максимально допустимый ток, который может длительное время отдавать блок питания в нагрузку, и выходная мощность блока питания.

С выходным напряжением все просто. Лента 12-ти вольтовая, и блок питания нужен на 12 вольт, лента на 24 вольта – блок питания берем на 24 вольта.

Следующий параметр — максимальный ток, отдаваемый блоком питания – параметр очень важный, но в стандартных расчетах для систем со светодиодной лентой используется редко. Хотя, зная его всегда можно определить выходную мощность блока питания. Нужно просто перемножить выходное напряжение в вольтах на максимальный ток в амперах и получим мощность в ваттах. Например, блок питания с выходным напряжением 12 вольт и максимальным током 5 ампер имеет выходную мощность 60 ватт.

А выходная мощность блока питания – это как раз тот параметр, который нужен для наших расчетов.

Для наглядности, давайте рассмотрим расчет требуемого БП на примере.

1. Имеем комнату со сторонами 5х4 м. Хотим расположить ленту за карнизом по периметру комнаты. Длина периметра в таком случае составит 18 м. Соответственно, такой же длины у нас будет и лента.

2. Выбираем ленту не самую слабую, но и не самую яркую, например, ленту с артикулом 010346, модель RT 2-5000 24V Warm 2x (3528, 600 LED, LUX).

3. Из обозначения видно, что это лента длиной 5 метров, с питанием 24 вольта, теплого белого цвета, двойной плотности (но не двухрядная), светодиоды 3528 (размер SMD корпуса светодиода 3.5х2.8мм), 600 светодиодов на 5 метров (или 120 светодиодов на метр).

4. Из характеристик, имеющихся на сайте или указанных на упаковке, узнаем, что потребляемая мощность этой ленты – 48 ватт на 5 метров (9.6 Вт/м)

5. Умножаем длину ленты на потребляемую мощность 18*9.6 = 172.8 Вт.

6. Добавляем минимум 10-ти процентный запас по мощности, получаем 182.8 Вт.

7. Выбираем ближайший по мощности блок питания с округлением в большую сторону. Это блок питания мощностью 200 Ватт с выходным напряжением 24 вольта (как мы помним лента у нас с питанием 24 вольта).

8. Смотрим на сайте габариты блока питания. Артикул 013138, модель ARPV-24200 (24V, 8.3A, 200W) — 238x130x60 мм.

9. Далее возможны варианты:

a) нормально, габариты устраивают – оставляем как есть;

b) ого! куда же я его такой здоровый дену? – делим ленту на два участка, выбираем два блока питания меньшего размера и, соответственно, меньшей мощности — по 100 ватт каждый — и подключаем к каждому блоку питания по 9 метров ленты;

c) опять не помещается — делим ленту на четыре фрагмента, ставим четыре блока питания по 50 ватт.

Удобнее всего монтировать оборудование, когда один блок питания устанавливается на каждые 5 или 10 метров ленты.

В рассмотренном примере мы использовали герметичный блок питания. Вы можете спросить, зачем в обычной комнате ставить герметичный блок. Ведь есть же блоки в защитном кожухе, они дешевле. Да, есть. Да, дешевле. Но они незащищены не только от влаги, но и от пыли, от попадания в них мелких предметов, домашних «животных», наконец. Все это неблагоприятно сказывается на надежности системы в целом. Кроме того, на сегодняшний момент все блоки питания для светодиодной ленты это импульсные преобразователи напряжения. Поэтому от открытых блоков питания, как бы качественно они не были сделаны, в полной тишине может быть слышен слабый «комариный» писк. Правда блоки питания в защитном кожухе бывают большей мощности, чем герметичные блоки, но и здесь есть свои подводные камни. Негерметичные блоки с мощностью более 200 ватт требуют принудительного охлаждения и снабжаются встроенными вентиляторами. Как гудит куллер системного блока компьютера у Вас под столом, слышали? Хочется Вам по ночам, при включении подсветки слышать аналогичное жужжание? В общем, делайте свой выбор.

И еще одна важная рекомендация. Монтаж блоков питания необходимо осуществлять таким образом, чтобы обеспечить циркуляцию воздуха для охлаждения блоков, а также предусмотреть возможность доступа к БП для их обслуживания или замены. Надежность применяемых блоков питания достаточно высока, но в нашей реальной жизни не исключены случаи, при которых в сети может появиться опасное для БП напряжение или пульсации, приводящие к выходу их из строя.

Особенности выбора блока питания для системы с регулировкой яркости или системы с многоцветной лентой.

Если в результате описанного выше расчета получилось, что мы вполне обходимся одним блоком питания и размер его нас устраивает, то никаких особенность в подборе блока для системы подсветки с управлением лентой нет. Дальше эту статью можно не читать.

Во всех остальных случаях, нужно решить еще одну задачу. Задача заключается в следующем. Если мы хотим управлять лентой – будь то изменение яркости или изменение цвета – мы должны установить между блоком питания и лентой соответствующее устройство управления – диммер или RGB контроллер. Следовательно, если мы делим мощность на два блока питания, то должны поставить два устройства управления. Делим на четыре блока, должны поставить четыре устройства. И т.д. И все это должно срабатывать одновременно, от одного регулятора или от одного пульта. Но вопросы синхронизации – это отдельная тема и сейчас она нас не интересует. Сейчас мы занимаемся электропитанием. Можно, конечно, оставить все как есть, и поставить на каждый блок питания по отдельной управляющей коробочке, но наша цель (точнее, Ваша цель) уменьшить количество коробочек и дополнительных проводков в системе (а соответственно, уменьшить стоимость оборудования и монтажных работ).

Если мы используем 24-х вольтовую ленту, то можно прибегнуть к одной хитрости. Мы можем взять два одинаковых блока питания на напряжение 12 вольт, соединить их последовательно и получить на выходе такой системы напряжение 24 вольта и удвоенную мощность. Схема подобного соединения приведена на рисунке.

Электросхема подключения

При таком включении необходимо учесть особенности конструкции блоков питания. Некоторые БП выполнены таким образом, что их металлический корпус соединен с минусовым выходом. При использовании подобных блоков в рассматриваемой схеме требуется изолировать корпуса БП друг от друга и от любых металлических поверхностей.

Некоторые «умельцы» предлагают для увеличения мощности соединять выходы блоков питания параллельно. Подавляющее большинство БП не допускают такого соединения. Это связанно с тем, что двух идеальных блоков питания с абсолютно одинаковыми выходными напряжениями не бывает. Как бы ни старался производитель, но хоть на сотые доли вольта оно будет отличаться. Напряжение на выходе блока стабилизируется специальной электронной схемой, которая постоянно следит за выходным напряжением и в случае его отклонения от нормы, старается вернуть его в заданный диапазон. В случае соединения в параллель двух блоков с разными напряжениями, каждый из них начнет «перетягивать одеяло» на себя. Рано или поздно это закончится выходом БП из строя. Кроме того, в момент включения такой системы один блок может мешать запуститься другому. В результате, могут появиться периодические моргания ленты при включении подсветки. Ради справедливости, следует заметить, что существуют блоки питания, допускающие параллельное соединение, но это отдельный, довольно редко встречающийся класс. Возможность такого соединения обязательно указывается в документации на блок питания.

Как выбрать блок питания для светодиодной ленты. Формула расчета мощности.

блоки питания для светодиодных лент выбор

Что такое блок питания для светодиодных лент? Это прежде всего преобразователь сетевого напряжения 220В, в рабочее напряжение ленты 12 или 24В.

Блоки питания (сокращенно БП) бывают:

открытый блок питания для светодиодных лент

  • открытыми

полугерметичный блок питания

  • полугерметичными

герметичные блоки питания лент

  • герметичными

Поэтому выбирают их в зависимости от места установки.

расчет и подключение блока питания 12-24В

Приобретается БП отдельно от ленты и в комплекте с ней не идет. Главный параметр выбора — его номинальная мощность. Как же подобрать и рассчитать необходимый под ваши нужды соответствующий блок?

Для этого в первую очередь необходимо знать мощность всей ленты. Плюс прибавить к ней определенный запас по ваттам. Минимум этого запаса — 30% от общей мощности.

данные на упаковке о мощности светодиодной ленты на 1 метр

Как подсчитать мощность светодиодной ленты? Для начала узнайте сколько потребляет 1 метр. Эти данные обычно указываются на упаковке.

5

Если упаковки нет, то можно воспользоваться таблицей и примерно рассчитать мощность, в зависимости от типа светодиодов и их количества на 1 метр.

расчет мощности блока питания для светодиодной ленты

После этого замерьте длину всех отрезков, которые будут подключаться к блоку.

формула расчета мощности блока питания для светодиодных лент

Далее расчет мощности блока питания нужно сделать по формуле:

Для примера: у вас есть лента 4,8Вт/м. Ее протяженность — 18 метров. Формула расчета мощности показывает, что вам необходим БП мощностью в 112Вт.

При этом всегда выбирайте блок, ближайший в большую сторону. Для данного случая это 120Вт.

Коэффициент запаса мощности меньше 30% не используйте. Зачем он вообще нужен, спросите вы?

сгоревший блок питания светодиодной ленты изнутри

Он необходим, чтобы блок питания не работал на пределе своих возможностей. Если вы подберете блок строго по значению мощности ленты, то проработает он совсем не долго. И то, если это качественное изделие.

Нагрев корпуса в этом случае будет стабильно составлять 60-70 градусов. А что говорить о внутренних элементах схемы!

При этом вполне возможны появления посторонних звуков.

плохая пайка в дешевых блоках питания

Также при перегреве возможны нарушения некачественной пайки. Зачастую, именно она является частой причиной выхода прибора из строя.

Не облуженные выводы элементов, со временем окисляются и элементарно пропадает контакт. Найти такую неисправность простым обывателям, не связанным с радиотехникой, бывает сложно.

И они просто выкидывают блок в мусорку. Хотя для его починки, всего-то нужно было хорошенько пропаять один из контактов.

После того, как определились с типом и мощностью, необходимо выполнить правильное подключение. На всех блоках обязательно идет маркировка клемм. Перепутать бывает сложно. Главное разобраться, что означают эти надписи.

подключение 220В на блок питания

Первые клеммы обозначают как L и N. Это контакты подключения напряжения питания 220 Вольт. L — это фаза, N — ноль.

Но по-большому счету, фазировка или полярность здесь не важны. Поэтому не обязательно выяснять, где у вас в проводке ноль, а где фаза. Блок будет работать одинаково.

где стоит предохранитель в блоке питания 12В

Конструктивно в БП на входе стоит мостовой выпрямитель, и ему все равно к какой паре диодов будет подана фаза. Хотя предохранитель изначально и стоит в фазной цепи L.

переключатель напряжения 110 и 220В сбоку блока питания

Обратите внимание, что некоторые блоки могут подключаться как в сеть 220В 50Гц, так и 110В 60Гц (напряжение в США). Для этого у них сбоку имеется переключатель.

Затем идет значок заземления. Это место куда подключается заземляющий проводник, если у вас трехпроводная сеть и дома есть нормальный контур заземления.

Когда в розетках дома только фаза и ноль, без заземляющего провода Pe — данная клемма остается пустой. Ничего подключать на нее не нужно.

надпись COM вместо -V на клеммах блока

Иногда вместо «-V» может быть надпись «COM«.

подключение клемм 12В

Соответственно «+V» это место, куда подключается плюсовой провод, а «-V» — минусовой.

Читайте также  Схема подключения точечных светильников

На тех корпусах, где +V и -V по 4шт и более, все эти выхода запараллелены. Поэтому без разницы, куда вы подключите 4 провода от 2-х лент, под две клеммы «+» и «-» или под четыре.

Однако производители рекомендуют при параллельном подключении нескольких лент, использовать все клеммы блока питания.

блок питания с шестью клеммами 12В

Чем мощнее БП, тем больше у него выходных клемм для подключения светодиодных лент.

Когда для вас не принципиальны габариты, то можно даже поставить б/ушный блок питания от компьютера. Главное, чтобы его характеристики подходили.

То есть, выходное стабилизированное напряжение 12 или 24В, и необходимая мощность с 30% запасом. Правда, такие модели обычно идут с вентилятором и будут сильно шуметь, имейте это ввиду.

как найти плюс и минус на светодиодной ленте

Чтобы понять на самой ленте, где какие контакты, внимательно посмотрите на ее подложку. Если там нет явных надписей с «+» ««, то ищите другие обозначения.
Например, там где будет надпись 12V — это плюсовой контакт, а где буквы GND — минусовой.

Когда лента уже идет с припаянными проводами, то как правило, черный цвет обозначает минус, а красный — плюс.

Однако доверяться только цветам не стоит. Всегда проверяйте саму ленту.

регулировка выходного напряжения на блоках питания

Еще на корпусе с самого краю может быть регулировочный винт. Обозначен он как ADJ.

Он убавляет или добавляет выходное напряжение. Например, когда у вас в сети стабильно ниже чем 220В (200-205В), то и светодиоды в ленте будут гореть не так ярко, как должны.

как регулировать выходное напряжение 12В на блоках питания светодиодных лент

Подрегулировать это можно с помощью данного винта. Однако специалисты не советуют делать выход больше 12В. Считается даже лучше, если выходное напряжение будет немного меньшим. Это здорово продлит срок службы ваших светодиодов.

Запомните, что источник питания напрямую влияет на срок работы ленты, если у него выход больше 12 Вольт. Все остальные проблемы, как правило связаны с перегревом, деградацией кристаллов и некачественными производителями.

Причины выхода из строя светодиодной ленты

перегоревшие светодиоды

Светодиодные ленты выходят из строя по разному. Если от перенапряжения — то сгорают все элементы сразу, или перестают светить некоторые сегменты.

неравномерное свечение светодиодной ленты почему

Если от перегрева, то неравномерно теряется яркость по всей ленте. Одни светодиоды светят ярче, другие тусклее.

Когда вышел срок службы, то светодиоды равномерно теряют яркость до определенного момента. После достижения минимума, яркость деградации прекращается.

Иногда бывает, что лента начинает самопроизвольно мигать. Если мигает вся одновременно — причина в блоке питания. Если сегментами — то проблема в самой ленте.

подключение RGB контроллера

Если у вас лента многоцветная — RGB, то в этом случае еще нужно подключить контроллер.

подключение RGB контроллера

То есть, теперь вы подключаете RGB ленту не к источнику питания, а к контроллеру. У многоцветной ленты всего 4 провода.

Как выбрать и рассчитать блок питания для светодиодной ленты

В последние годы светодиодная лента стала особо популярной. Имея невысокую стоимость и будучи поистине универсальной в плане применения, она успешно используется как для декоративной подсветки, так и для освещения. Основной трудностью, с которой сталкиваются начинающие мастера, является выбор блока питания для светодиодной ленты (СЛ). Сегодня мы попробуем решить этот вопрос.

Принцип действия импульсного блока питания

На сегодняшний день для питания светодиодной ленты применяются блоки, использующие принцип импульсного преобразования напряжения. Суть работы блока питания такого типа заключается в следующем:

  1. Выпрямление сетевого напряжения.
  2. Подача напряжения на первичную обмотку трансформатора в виде высокочастотных импульсов. Они следуют с частотой более 20 кГц, а продвинутые схемы дорогих ИИП работают на частотах в 100 кГц.
  3. До нужного уровня напряжение понижается при помощи импульсного трансформатора.
  4. На выходном каскаде происходит выпрямление и стабилизация величины пониженного напряжения.

Для примера рассмотрим классическую схему импульсного преобразователя переменного напряжения 220 В в постоянное 12 В, собранного на микросхеме Top242.

импульсный блок

Схема импульсного блока питания AC220/DC12 В

Входное сетевое напряжение поступает на выпрямитель, состоящий из диодного моста BR1 и сглаживающего фильтра С1-С4, L1. Полученное таким образом постоянное напряжение поступает на микросхему DA1, на которой собран высокочастотный (до 100 кГц) генератор, нагруженный на импульсный трансформатор Т1. Принцип работы трансформатора тот же, что и у классического. Единственное отличие – он работает на высокой частоте, но об этом позже.

Пониженное до 12 В напряжение высокой частоты поступает на выпрямитель (диод D3) и сглаживающий фильтр (С9, С10, L1). Одновременно это же напряжение через оптрон U1 поступает на цепь стабилизации, встроенную в микросхему DA1. Стабилизация производится при помощи широтно-импульсной модуляции (ШИМ), суть которой заключается в следующем.

При увеличении выходного напряжения цепь стабилизации (ШИМ-контроллер) изменяет скважность (длительность) импульсов, поступающих на трансформатор, и его действующее выходное напряжение уменьшается. При чрезмерном понижении выходного напряжения длительность импульсов увеличивается. В результате на выходе блока устанавливается ровно 12 В, что и необходимо для правильного питания светодиодной ленты.

В чем преимущества импульсного блока питания перед трансформаторным? Поскольку преобразование напряжения производится на относительно высокой частоте, соответственно, уменьшаются габариты и масса трансформатора, а значит и всего блока. Причем уменьшаются существенно – в десятки раз. По этой же причине уменьшаются и габариты сглаживающих конденсаторов. ШИМ-модуляция же позволяет отказаться от классических линейных стабилизаторов, имеющих низкий КПД и требующих громоздких радиаторов охлаждения.

В результате мы получаем исключительно компактный и надежный блок питания с КПД до 95%.

Основные критерии выбора

Выбирая блок питания для СЛ, необходимо обратить внимание на следующие основные характеристики:

  1. Метод преобразования напряжения.
  2. Принцип охлаждения.
  3. Исполнение.
  4. Выходное напряжение.
  5. Мощность.
  6. Дополнительный функционал.

Метод преобразования

Как я уже говорил выше, блок питания может быть трансформаторным или импульсным. Если нужен блок питания относительно небольшой мощности, то предпочтение лучше отдать импульсной конструкции. Покупка серьезного ТБП оправдает себя лишь при мощностях в сотни ватт – ИБП такой мощности стоят дорого и нередко имеют вентиляторы охлаждения, которые создают шум и собирают пыль.

Охлаждение

Охлаждение может быть пассивным и активным. В первом случае охлаждение узлов прибора производится естественным образом, во втором для этих целей служит вентилятор. Если мощность БП невелика, то от устройства с принудительным охлаждением лучше отказаться: вентилятор шумит и вместе с воздухом всасывает массу пыли, оседающую на узлах блока. Такие источники требуют регулярного технического обслуживания и, главное, плохо защищены от влаги.

шумный блок питания

Такой блок не только шумит, но и является своеобразным пылесосом

Исполнение

От конструктивного исполнения зависит степень защиты от окружающей среды. Если блок питания будет работать на улице или во влажном/пыльном помещении, то придется выбрать пылевлагозащищенную, а еще лучше герметичную конструкцию. Никаких дырочек, щелочек и, конечно, никаких вентиляторов. Для сложных механических условий (вибрация, тряска, удары и пр.) отлично подойдет прибор в металлическом сплошном корпусе. Для обычного жилого помещения можно выбрать блок в открытом кожухе со множеством вентиляционных отверстий – он будет лучше охлаждаться.

Герметичный и металлический блоки питания

Герметичный пластиковый блок питания (слева), открытый металлический защищенный от пыли, влаги, ударов блок питания (справа)

Выходное напряжение

Тут все просто. СЛ выпускаются на 2 напряжения – 12 или 24 В. Прочитай на упаковочной коробке или даже на самой ленте, на какое напряжение питания она рассчитана. Затем выбери БП, имеющий нужные параметры.

Эта СЛ рассчитана на напряжение 12 В, значит и блок питания нужен на такое же напряжение

Эта СЛ рассчитана на 12 В, значит и блок питания нужен на такое же напряжение

Мощность

ток и мощность блока

На этом блоке питания указаны и ток, и мощность

Мощность блока питания должна быть как минимум на 15-20% выше мощности, потребляемой лентой (лентами). Вроде все просто, но есть один нюанс. Редко, но случается, что на блоках питания не пишется мощность, а указывается лишь максимально допустимый ток. Как пересчитать его в мощность? Элементарно. Умножь рабочее напряжение (12 или 24 В) блока на его максимально допустимый ток в амперах, и ты получишь мощность в ваттах.

На этом блоке питания (фото выше) указана мощность в 20 Вт, ток 1.67 А и напряжение 12 В. Проверим для интереса: 12*1.67=20.04 Вт. Все сходится.

Дополнительные функции

Блок питания для СЛ

Блок питания для СЛ с беспроводным пультом дистанционного управления и встроенным диммером

Кроме своей основной работы, блок питания может выполнять и некоторые дополнительные функции. Существуют, к примеру, устройства со встроенными диммерами (регуляторами яркости), таймерами, автоматами эффектов и даже с беспроводными пультами ДУ. Тут уже на твое усмотрение, но имей в виду, что любая дополнительная функция отражается на стоимости конструкции.

Как рассчитать мощность блока питания для светодиодной ленты

Если у тебя под рукой калькулятор или даже просто лист бумаги с ручкой, расчет мощности блока питания займет не более минуты. Причем никаких специальных знаний для этого не потребуется, достаточно 3-х классов средней школы.

Прежде всего рассчитай потребляемую СЛ мощность. Для этого тебе понадобятся два параметра: длина будущего осветителя и его удельная мощность. Длину, само собой, ты выбираешь сам в зависимости от дизайнерской задумки. Удельная же мощность светодиодной ленты указывается в сопроводительной документации и нередко прямо на упаковке. Единицы измерения этого параметра – Вт/м.

Предположим, ты купил СЛ с удельной потребляемой мощностью 14.4 Вт/м. Это означает, что каждый метр такой ленты «съест» 14.4 Вт. При этом напряжение питания прибора значения не имеет. Для подсветки ты решил использовать 3 метра СЛ. Считаем: 14.4*3=43.2 Вт. Итак, твоя задумка будет потреблять 43,2 ватта. Для надежной работы источника питания он должен иметь некоторый (15-20%) запас мощности. Добавляем к результату еще небольшой запас и получаем 50 Вт.

Таким образом, тебе нужен адаптер мощностью не менее 50 Вт. Скорее всего, в стандартном ряду БП именно такой мощности не окажется, поэтому покупаешь ближайший по значению с большей мощностью. К примеру, на 60 Вт.

Если ты решил обеспечить питание одним адаптером нескольких СЛ, то рассчитай потребляемую мощность каждой, а результаты сложи. Ленты будут включаться параллельно (о схеме включения см. ниже), а значит, их мощности суммируются.

Подключение светодиодной ленты

Подключение “трансформатора” (адаптера) к светодиодной ленте совсем несложное, и вряд ли вызовет у тебя трудности. Здесь достаточно решить 3 основных вопроса:

  1. Разобраться с полярностью подключения.
  2. Подобрать провод нужного сечения.
  3. Выбрать схему включения.

Полярность подключения

Внимательно осмотри блок питания и найди, где у него на выходных (output или out) клеммах обозначение «плюс», а где «минус». Если вместо клемм у блока провода, то дополнительно они расцвечены: красный «плюс», черный «минус» соответственно. То же самое сделай и со светодиодной лентой:

Полярность подключения СЛ

Полярность подключения СЛ и ее блока питания

Важно! Расцветка проводов – красный и черный – условна. Очень многие производители не придерживаются этого стандарта, провода у их БП могут быть любого цвета, поэтому ориентируйся только на маркировку.

Зависимость сечения провода от тока и длины линии (провод медный многожильный)

Очень часто диаметр питающего провода выбирают такой же, какой имеют выходящие проводки из адаптера. Так делать нельзя! Чем длиннее питающая линия, тем большее должно быть сечение провода.

Выбор схемы включения

Если СЛ одна, то схема подключения будет элементарной, ее даже стыдно рисовать:

Схема подключения к одной СЛ

Схема подключения блока питания к одной СЛ

Немного сложнее, если лент несколько. Типичная ошибка начинающего дизайнера – последовательное соединение нескольких СЛ в одну длинную линию:

Неправильное подключение

Неправильное подключение нескольких СЛ к одному адаптеру питания

Такое подключение перегружает питающие шины первой ленты и они, как правило, сгорают. И тогда СЛ можно выбросить. Если лент несколько, единственно правильным решением может быть только такое:

Правильное подключение

Правильное подключение нескольких СЛ к одному адаптеру питания к содержанию ↑

Отличия блока питания от драйвера

Нередко блок, обеспечивающий питание СЛ, путают с драйвером для питания светодиодов. Блок питания и драйвер – абсолютно разные приборы, и путать их ни в коем случае нельзя!

Читайте также  СХЕМА ПРОСТОГО ЛАМПОВОГО ПРИЁМНИКА

Светодиодный драйвер – это, по сути, стабилизатор тока. Он ограничивает величину протекающего через светодиоды тока и обеспечивает стабилизацию этого тока на заданном уровне независимо от величины входного напряжения. Они не боятся КЗ, но могут сгореть от холостого хода (ХХ).

Адаптер для СЛ не следит за выходным током: он выдает его столько, сколько потребует сама лента. Устройство занимается лишь стабилизацией напряжения, а за током в СЛ следят специальные токоограничивающие резисторы. Если ленте нужно, скажем, 12 В, то блок питания выдаст ровно 12, поскольку именно от этого параметра зависит качественная работа ленточных осветителей. Такие блоки питания боятся КЗ, но отлично себя чувствуют на ХХ из-за нулевого выходного тока.

Таким образом, спутав адаптер с драйвером и поставив один вместо другого, ты в лучшем случае получишь неработоспособную конструкцию. В худшем же лишишься либо осветительного прибора, либо источника питания – все будет зависеть от характеристик и мощности оборудования.

Вот мы и разобрались с блоками питания для светодиодных лент. Теперь ты знаешь, какие они бывают, и при необходимости сможешь выбрать нужный тебе без посторонней помощи.

Расчет и выбор блока питания для светодиодной ленты

В наше время в быту, торговле и на производстве широко используются светодиодные ленты самой разной мощности и светимости. Одни ленты используются в качестве дежурного освещения или оформления витрин магазинов, другие как основное освещение в комнате. О том, какие типы лент, где используются, и какую лампу накаливания можно заменить каждой из них мы писали в статье «Применение и выбор светодиодной ленты«.

Если вы уже сделали выбор светодиодных лент, которые будут использоваться в доме, то необходимо выбрать тип и мощность блока питания. Прямо в розетку включать ленты нельзя. Это приведет к мгновенному выходу ленты из строя, дыму, а иногда и пожару. Правильно сделать расчёт и выбор блока питания для ленты вам поможет наша статья. Нужно отметить, что встречаются ленты, рассчитанные на напряжение 220v. Эти ленты режутся на отрезки по одному метру и широкого распространения не получили, прежде всего из-за опасности поражения электрическим током и пониженной надежности. Если в такой ленте сгорает один светодиод, то гаснет и нуждается в замене целый метр ленты. В отличие от нее в ленте на 12V необходимо заменить только участок с тремя диодами. А в некоторых случаях, в зависимости от места установки, это не очень заметно и не требует немедленного ремонта.

Типы блоков питания

виды блоков питания для светодиодной ленты

Прежде всего, нужно определить, где будет установлен блок питания. От этого зависит тип блока, который вам нужно будет приобрести. Блоки питания делятся на три типа:

  1. в пластмассовом корпусе, как блоки питания ноутбука или планшета. Их легко спрятать под подвесным потолком или в шкафу, но мощность их не очень велика. Мощность таких блоков не более 75Вт;
  2. в алюминиевом корпусе, герметичные; Их мощность может быть до 100Вт. Эти блоки больших размеров, но не боятся воды и низких температур. Их используют в подсветке рекламы и витрин магазинов;
  3. в перфорированном корпусе, со встроенными кулерами или без них. Эти блоки могут быть любой мощности. Если в них встраивается кулер, то блок при работе шумит. Их целесообразно использовать, если в доме или квартире прокладывается отдельная сеть 12V. В любом случае, блоки этого типа нельзя устанавливать в замкнутое пространство. Для нормального охлаждения эти блоки нуждаются в хорошей циркуляции воздуха.

Блоки питания могут быть разной сложности. В некоторых встраивается диммер — устройство, позволяющее регулировать яркость свечения ленты. Они могут быть с дистанционным управлением и программируемые по времени включения и отключения. Если диммера нет, а вы хотите его установить, то придется покупать его отдельно. В некоторых блоках питания есть возможность регулировки выходного напряжения для компенсации падения напряжения в длинных проводах. Блоки питания отличаются еще и ценой. От дешевых, но вполне надежных до дорогих, известных фирм. Очень дешевые блоки непонятных производителей лучше не покупать. Никто не даст гарантию, что он будет работать длительное время, а не сгорит через две недели или при коротком замыкании. В тоже время, в хороших блоках есть защита короткого замыкания и от перегрузки.

Нужен ли мощный блок питания для светодиодной ленты

Как рассчитать блок питания для светодиодной ленты

Прежде всего, необходимо определить мощность, потребляемую лентами. Для этого мощность одного метра ленты, указанную на ней, умножают на общую длину. Если от одного блока питания подключены светодиодные ленты разных типов, то эту операцию повторяют для каждого типа в отдельности, после чего складывают получившиеся значения. Кроме этого необходимо брать 25-30% мощности запаса для большей надежности и долговечности блока для светодиодной ленты.

Предположим, вы хотите установить на кухне подсветку столов рабочей зоны. Для этого необходимо 2,5м ленты SMD5050 с плотностью 60 диодов на один метр. Мощность такой ленты 14,4Вт метр. Умножаем 14,4Вт на 2,5м. Получаем потребляемую мощность ленты 36Вт. Для получения запаса мощности в 30% 36Вт умножаем на 130% или на 1,30, в зависимости от используемого калькулятора. Получаем минимальную мощность блока питания 46,8Вт. Выбираем ближайшее значение из имеющихся в продаже – 60Вт. Если же необходимо подключить ленты разных типов, то задача усложняется. Предположим, что на кухне подсвечена не только рабочая зона, но и пол. Значит, кроме 2,5м ленты SMD5050 плотностью 60 диодов на метр и мощностью 36Вт подключаем 4м ленты SMD3528 плотностью 60 диодов. Мощность ленты SMD3528 считаем также, как и SMD5050. Получаем 19,2Вт. Складываем полученные значения 36Вт и 19,2Вт. Получаем 55,2Вт. Учитывая 30% запас мощности блок питания нужен не менее чем 71,76Вт. Ближайшее большее стандартное значение – 72Вт. Его и покупаем.

Определив необходимую мощность, можно решить, каких и сколько блоков питания необходимо. Блок недостаточной мощности быстро выйдет из строя, а слишком мощный блок будет дороже необходимого.

Для управления яркостью используется диммер. Его мощность должна соответствовать мощности блока питания.

схема подключения светодиодной ленты

Определив необходимую мощность, можно решить, каких и сколько бп для светодиодных лент необходимо. Блок для диодной ленты недостаточной мощности быстро выйдет из строя, а блок с лишней мощностью будет дороже необходимого.

Подключение RGB-ленты

RGB-лента подключается через RGB-контроллер. Мощность его выбирается также, как и для обычной ленты. Если от одного контроллера нельзя запитать все отрезки из-за большой мощности ленты или расстояния между ними, то используется RGB-усилитель. Каждый усилитель запитывается через отдельный блок питания, или, если есть возможность, можно несколько усилителей подключить к одному блоку питания. Подробнее об этом рассказывается в статье «Подключение светодиодной ленты«.

схема подключения светодиодной ленты

Нестандартные блоки питания

У многих людей или у их друзей или соседей есть блоки питания, оставшиеся от старой радиоаппаратуры. Иногда их можно использовать. Но не всегда напряжение, указанное на корпусе соответствует реальному. В некоторых случаях эти значения истинны только при подключении номинальной нагрузки. Можно использовать блок питания от старого компьютера. Для включения блока без компьютера обычно необходимо замкнуть между собой черный и зеленый провода. Иногда к ним нужно добавить серый.

Можно также разрезать ленту на участки по три светодиода, соединить последовательно и запитать их через диодный мост и конденсатор, сглаживающий пульсации. Необходимо 19, а лучше 20 отрезков. Но этот способ очень трудоемкий и ненадежный. Если нарушится одна из паек или перегорит один диод, то погаснет вся лента. Ленту также нужно использовать водонепроницаемую и места подключения изолировать термоусадочной трубкой.

Схема подключения светодиодной ленты 220V

Подключение светодиодной ленты через конденсатор

Мощный блок питания для светодиодной ленты не получится, но если нужно подключить небольшой отрезок, например, для настольной лампы, то можно просто подключить от сети 220v, через конденсатор. Емкость конденсатора определяется по току отрезка ленты, который вы хотите подключить таким образом. Для этого мощность метра ленты делят на 10, 20, 30 или 40. Это зависит от того, какая плотность светодиодов или сколько участков по три светодиода в метре ленты. Полученную мощность делим на 12V (напряжение питания) и полученное число умножаем на количество используемых участков. Емкость конденсатора С1 берется 1.4mkF на каждые 0.1А, напряжение конденсатора не меньше 300V. При недостаточной емкости лента будет светится тускло, а при повышенной быстро сгорит. Тип конденсатора МГБО или К73.Конденсатор, сглаживающий пульсации напряжения и светимости С2 электролитический, емкостью 200mkF и напряжением 15V. Диоды выбираются по току, напряжением 300V.

Бестрансформаторный блок питания светодиодной ленты

Пример рассчёта

Например, если мы хотим заменить в настольной лампе лампу накаливания мощностью 10Вт, то нам нужен отрезок ленты SMD3528 плотностью 60 диодов, длиной 0,5 метра, содержащий 5 участков по три светодиода. В метре этой ленты 10 таких участков, следовательно, один участок имеет мощность 4,8Вт, деленную на 10 – 0,48Вт и ток, 0,48Вт, деленные на 12V — 0,04А. 5 участков дают общий ток 0,2А. Следовательно, емкость конденсатора С1 не больше 2.8mkF, a C2 — не меньше 40mkF.

Если взять конденсатор типа К73 и диодный мостик с конденсатором С2 на плате от сгоревшей энергосберегающей лампы, то получившуюся схему без труда можно спрятать в основании лампы или корпусе зарядного устройства от старой мобилки. Лампу нужно брать из расчета не менее 20Вт мощности на 0,1А тока отрезка ленты.

ВАЖНО! В таких схемах лента находится под напряжением 220V, поэтому она должна быть спрятана под рассеивателем, на пластмассовом основании либо использовать водонепроницаемую ленту, даже в сухом месте. На место подключения нужно одеть кусочек термоусадочной трубки.

Бестрансформаторный блок питания светодиодной ленты

После выбора блока питания светодиодные ленты нужно подключить. О том, как это сделать расскажет статья «Подключение светодиодных лент«.

Как выбрать блок питания для светодиодной ленты 12В или 24В

Импульсные блоки питания предназначены для преобразования переменного напряжения, которое используется в бытовой электросети (в квартирах, офисах и т.д.) в постоянное, которое необходимо для работы светодиодных лент. Также импульсный блок питания понижает напряжение с 220В до 12В.

Но прежде чем выбирать блок питания для светодиодной ленты, нужно определиться с ее типом, длиной и мощностью. О том, как правильно выбрать ленту, мы писали здесь.

Если вы остановили выбор на ленте с напряжением 12 или 24В, то можно подбирать блок питания. И первое, с чего нужно начать, — определить его мощность, которая требуется в вашем случае.

Формула расчета мощности блока питания

Для правильного выбора блока питания используют следующую формулу:

Потребляемая мощность с одного метра (Вт/м) * Необходимая длина светодиодной ленты (м) + 20 % (запас по мощности) = Мощность блока питания (Вт).

Дополнительные 20% — это запас мощности, который необходим для обеспечения стабильной работы блока питания. Без запаса блок при полной нагрузке будет работать на максимальной мощности, что приведет к его перегреванию и быстрому выходу из строя. Если блок питания перегружен – срабатывает защита от перегрева. Это приводит к морганию светодиодной ленты, так как защита отключает подачу питания (чтобы блок охладился до безопасной температуры).

Разберем все на конкретном примере.

Светодиодная лента артикул 00-120. Лента светодиодная 12В, 8 Вт/м, SMD 2835, 60 д/м, IP20, 800 Лм/м, ширина подложки 8мм, цвет теплый белый, требуемая длина — 2,5 метра.

Подставляем данные в формулу:

Потребляемая мощность — 8 Вт/м * Необходимая длина — 2,5 м + 20 % (запас мощности) = 24 Вт. Из ближайших по мощности блоков питания выбираем блок 25 Вт, арт. 03-02.

Степень защиты от пыли и влаги

При выборе блока питания, как и при выборе самой ленты, учитывают класс пылевлагозащиты. Подробнее о классе IP защиты можно прочитать здесь.

Необходимо, чтобы блок питания соответствовал не только заявленной мощности светодиодной ленты, но и ее классу защиты от пыли и влаги.

Читайте также  ЛАМПА СВЕТОДИОДНАЯ УНИВЕРСАЛЬНАЯ

Для помещений с нормальным сухим микроклиматом (например, спальня) существует большое количество стандартных блоков питания со степенью пылевлагозащиты IP20.

Корпус таких блоков сделан из алюминия, железа или другого металла и имеет на верхней части отверстия для дополнительного охлаждения. Такие блоки питания лишь минимально защищены от пыли или других мелких частиц и совсем не защищены от влаги.

Для размещения в местах повышенной влажности, в производственных помещениях, а также для наружного размещения используются герметичные блоки питания (класса IP65 и IP67). При этом речь идет не только о ванной комнате, но и о кухне, где тоже часто бывает высокая влажность.

Электрическая схема в таких блоках питания полностью залита водонепроницаемым компаундом, но их степень влагозащиты различается в зависимости от класса.
IP65 – защищен от проникновения воды, но без погружения.
IP67 – защищен от проникновения воды, с возможностью кратковременного погружения на глубину до 1 метра.

Обратите внимание: защита блока не защищает контакты, поэтому иногда их надо дополнительно герметизировать.

И еще одна важная вещь — герметичные блоки залиты компаундом и имеют малую степень теплоотвода. Для лучшего охлаждения, при подключении лент большой мощности и/или использования блоков в закрытых пространствах, необходимо применять дополнительную принудительную вентиляцию внешними вентиляторами.

Один блок питания большой мощности или несколько малой мощности

Есть практическая разница в использовании одного мощного или нескольких маломощных блоков питания.

Несколько маломощных блоков питания

При подключении светодиодной ленты большой длины и большой мощности в обычных помещениях, где необходима дополнительная шумоизоляция (спальные комнаты, комнаты отдыха и т.д.), рекомендуется использовать несколько маломощных блоков питания.

Такие блоки имеют компактные размеры с возможностью размещения в небольшом пространстве. Их корпус позволяет производить охлаждение без использования принудительной вентиляции. Но для лучшего теплоотвода необходимо предусмотреть дополнительное свободное пространство вокруг таких блоков (обычно достаточно 20 см со всех сторон).

Один мощный блок питания

Для подключения светодиодной ленты большой длины и большой мощности может применяться и один мощный блок питания.

Эти блоки питания используют в местах, где есть пространство для установки блоков таких размеров, и существует общий шумовой фон (офисы, магазины и т.д.).

Для отвода выделяемого тепла в таких блоках требуется активная вентиляция: внешний или встроенный вентилятор (кулер), что может создать ряд неудобств при эксплуатации в тихих помещениях (спальнях и местах отдыха).

Особенности установки блоков питания

При выборе блока необходимо учитывать его конструктивные и габаритные параметры, такие как исполнение корпуса (стандартный плоский и широкий или длинный и тонкий).

Также необходимо обеспечить вентиляцию и соблюсти требования пожарной безопасности, предусмотреть возможность доступа при последующей эксплуатации и ограничить возможность случайного контакта детей с блоком.

Не рекомендуется устанавливать блоки питания рядом с отопительными приборами и оборудованием, вырабатывающим тепло (например, комнатные батареи). Нельзя устанавливать блоки друг на друга. Минимальное расстояние между подключаемыми блоками питания должно составлять 20 см и более.

При выполнении этих простых правил блоки питания для светодиодной ленты будут работать долго и надежно.

Как подобрать блок питания для светодиодной ленты

В данной статье рассматриваются основные моменты, на которые следует обращать внимание при выборе блока питания для светодиодной ленты, а также кратко освещаются вопросы о том, что такое PFC и как вычислить диаметр токопроводящей жилы.

Блок питания.jpg

Блок питания — это источник напряжения(трансформатор), который преобразует 220В в 12В, 24В или другое необходимое значение рабочего напряжения. Для питания светодиодных лент и модулей чаще всего используются импульсные блоки питания, где в качестве ограничителей тока работают резисторы, в отличие от драйверов, которые представляют собой источники тока, используемые для светодиодов, модулей и ламп, которые не имеют ограничителей тока.

Чтобы подобрать блок питания к выбранной светодиодной ленте нужно обратить внимание на следующие факторы:

  1. Рабочее напряжение светодиодной ленты.
  2. Суммарная мощность светодиодной ленты.
  3. Необходимость защиты корпуса блока питания от воды и пыли.
  4. Габаритные размеры блока питания.

Рассмотрим подробнее каждый фактор.

1. Рабочее напряжение (U)

Рабочее напряжение светодиодной ленты может быть 12 В, 24 В, иногда 36 В, управляемые ленты SPI обычно 5 В. Соответственно оно должно соответствовать выходному напряжению блока питания.

Существуют также блоки питания с возможностью плавной регулировки выходного напряжения, например источники напряжения Arlight серии JTS, такие можно применять в специальных проектах, где требуется нестандартное значение выходного напряжения, а также там, где необходимо скомпенсировать падение напряжения на длинных проводах.

Еще из нестандартных решений можно отметить блоки питания с несколькими каналами, в которых разное выходное напряжение, это может быть полезно, если нужно запитать ленты с разным рабочим напряжением на один источник напряжения.

2. Мощность светодиодной ленты (PСД)

Подбор блока питания по мощности осуществляется по следующему принципу: мощность должна быть равна суммарной мощности светодиодной ленты, умноженной на коэффициент запаса КЗ, равный 25÷30%, если пренебрегать коэффициентом запаса и использовать блок питания на пределе, то он не проработает долго из-за постоянного перегрева элементов.

Суммарная мощность светодиодной ленты вычисляется путем умножения мощности ленты на 1 метр длины PСД на общую длину L.

Таким образом, получаем следующую формулу:

PБП = L*PСД*Kз, где

L — длина ленты (м)

PСД — удельная мощность светодиодной ленты на 1 метр (W/м)

— коэффициент запаса (ед.)

3. Степень защиты корпуса блока питания от проникновения жидкости и пыли (класс защиты IP)

При выборе блока питания следует учитывать условия, в которых он будет находиться, если это обычное сухое жилое помещение, то подойдет блок питания в защитном кожухе с IP20 (защита от проникновения твердых предметов 12,5 мм, защиты от влаги нет).

Зачастую в блоках питания мощность более 250Вт в исполнении «Защитный кожух» IP20-IP40 используется активное охлаждение в виде кулера(вентилятора). Если Вы планируете рассматривать данные блоки питания, необходимо выбрать конструктив, когда кулер расположен перпендикулярно элементам платы в изделии, следовательно обдув воздуха будет более равномерный (воздух идет вдоль платы), и элементы будут меньше греться. На неудачных моделях вентиляторы расположены над платой и обдув платы источника напряжения происходит неравномерно.

Блоки питания и комплектующие для лент рекомендуется устанавливать в щитовые.

Блок питания 2.jpg

Установка светодиодной ленты в ванную комнату или помещение с повышенной влажностью требует класса защиты не менее IP65 (пылезащищен, защита от струй воды).

А. Блок питания 3.jpgБ. Блок питания 4..jpg

(А) Герметичный алюминиевый блок питания IP67 и (Б) блок питания в защитном кожухе IP20.

В условии использования на улице нужно предусматривать степень защиты IP67, такая степень обеспечивает защиту от струй воды под давлением во всех направлениях, возможно даже кратковременное погружение в воду до 1 м. Если необходима работа в погруженном режиме, то тогда используется максимальная защита IP68 или IP69 (при большом давлении воды).

При подборе мощный источников напряжения для светодиодных лент необходимо учитывать, что на блоках питания без защиты от влаги и пыли стоят вентиляторы. Данные вентиляторы сильно шумят при работе и могут создавать дискомфорт. Поэтому в дорогих проектах мы рекомендуем использовать источники напряжения в алюминиевом корпусе с пассивным охлаждением.

4. Габаритные размеры

Также следует обращать внимание на габаритные размеры блоков, в зависимости от того, куда Вы хотите его установить, мощные блоки питания могут достигать достаточно больших размеров, и спрятать такие будет затруднительно, к тому же часто они имеют вентилятор. Поэтому если требуется подключить длинный участок ленты, то можно пересмотреть схему подключения ленты и использовать несколько меньших по мощности блоков.

Схема блоки питания.jpg

Также при выборе места установки следует учитывать то, что чем мощнее блок питания, тем больше он нагревается, поэтому рекомендуется обеспечивать достаточно места для теплоотвода, чтобы блок не перегревался.

Пример подбора источника напряжения для светодиодной ленты

Рассмотрим следующий пример: нужно сделать декоративную светодиодную подсветку в ванной комнате по периметру потолка общей длиной 8 м.

Выбираем подходящую светодиодную ленту с защитой IP65, например, лента Arlight RTW 2-5000SE 24V White 2X (5060,300 LED,LUX), мощность 72 Вт на 5 м.

Cdtnjlbjlyfz ktynf.jpg

Основные параметры ленты:

  1. UСД = 24V
  2. PСД = 14,4 W/m

Подбираем мощность блока питания:

PБП = 8m*14,4W/m*1,3 = 149,8 W

Округляем в большую сторону и получаем, что нужно взять блок питания мощностью 150 Вт, его выходное напряжение 24 В, защитане менее IP65, например, блок питания ARPV-SS24150 (24V, 6.3A, 150W).

Блок питания 5.jpg

Что такое PFC в характеристиках трансформаторов(блоков питания)?

Иногда в маркировке блока питания можно увидеть буквы PFC, это аббревиатура PowerFactorCorrection или коррекция коэффициента мощности (коррекция реактивной мощности).

Не углубляясь в технические особенности, это означает, что блок питания выполнен в определенном схемотехническом решении, которое позволяет уменьшить потребление реактивной мощности (мощность имеет активную и реактивную составляющие, на показания счетчика обычно влияет только активная составляющая, но на общее потребление энергоресурсов влияют обе составляющие).

Такие блоки питания имеют высокое значение коэффициента эффективной мощности (Λ)>0,9, что позволяет отнести их к блокам питания высокого класса, низкий пусковой ток, они позволяют сократить нагрузки на токопередающие линии, уменьшить требования к толщине подающего питание провода. При большом количестве используемых блоков не требуется применять специальные пусковые автоматы.

Блоки питания с корректором мощности более экологичны, т.к. эффективнее расходуют электроэнергию.

Как вычислить и подобрать диаметр (или сечение) кабеля между светодиодной лентой и блоком питания?

Расчет сечения и диаметра кабеля для исключения падения напряжения(вольтажа):

При использовании светодиодной ленты важно, чтобы свечение было равномерным по всей длине, для этого падения напряжения на конце линии обычно не должно превышать 0.5 В, при условии, что длинные участки ленты запрещается подключать последовательно.

При расположении блока питания в непосредственной близости от ленты, проблемы, как правило, не возникает, но при удаленном расположении блока необходимо увеличивать толщину жилы для компенсации падения напряжения.

Ниже представлен алгоритм вычисления для блока питания(источника напряжения для светодиодных изделий) максимальной выдаваемой мощностью 150 Вт, выдаваемому напряжению 24 В, падение напряжения не более 0.5 В, расстояние от блока до ленты 10м:

Общее сопротивление линии R.

Допустимое падение напряжение делим на максимальный ток, ток вычисляется как мощность/напряжение:

Общее сопротивление линии R = 0,5V / (150W/24V) = 0,08 Om.

Сечение жилы S.

Длину линии умножаем на удельное сопротивление материала (для меди 0,018 Ом*мм2/м), делим на сопротивление R.

Сечение жилы S = (10m*0,018 Om*mm2/m )/ 0,08 Om = 2,25 mm2.

Диаметр жилы D.

Диаметр жилы.jpg

Используем формулу площади круга: радиус равен корню из частного площади и Πи.

Диаметр жилы: D= 2 х √(2,25 mm2/ 3,14) = 1,75 mm.

Таким образом, получаем, что для 10 метрового кабеля от блока питания до истока света (led ленты) падение напряжения составит 0,5В при использовании провода сечением 2,25mm2 (что соответствует диаметру 1,7 мм).

Также из приведенных вычислений видно, что компенсировать падение напряжения можно, используя ленту с большим рабочим напряжением, 24 В или 36 В.

Выбор сечения и диаметра кабеля для исключения потерь мощности при нагревании кабеля

Если подключать блок питания и светодиодную ленты на большом расстоянии друг от друга, то необходимо не только исключать падение напряжения питания на соединяющем кабеле, но закладывать потери мощности, которые может создавать данный кабель.

Важно: чем больше сечение кабеля, тем меньше потерь мощности при этом сопровождается. При сложным проектах — необходимо довериться профессионалам для расчета потерь мощности на кабелях. При больших расстояниях подбор максимальной выдаваемой мощности блока питания будет сопровождаться с большим запасом и кабель с большим сечением жилы.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: