Что такое максимальная токовая защита и какое у нее назначение

Назначение максимальной токовой защиты: ее определение и описание разновидностей

Назначение максимальной

Одним из основных требований безопасности электроснабжения, является использование различных устройств быстрого обесточивания электрических линий в случае аварийной ситуации.

Такими устройствами являются защитные реле. Это целый спектр самых разных схем, реагирующих на разные нарушения корректной работы, к примеру, замыкание между фазами, увеличенный расход мощности и прочее.

В статье мы разберём один из способов перегрузочной предохранения электрических линий. Выясним, что называется токовой максимальной защитой, её назначение и отличие от отсечки тока.

Устройство и работа

Назначение максимальной

Когда токовый параметр завышен, включается токовое реле, затем, через определённый промежуток, временное реле. Защита монтируется от трансформаторного устройства либо от генератора подающей подстанции, т. е. в начале линии.

Внимание! Рабочая зона максимальной токовой защиты находится между оборудованием, подающим электричество (генератор, трансформатор) и потребляющим оборудованием. Монтироваться она должна не от потребителя, а от поставщика электроэнергии.

Возможно пересечение рабочих зон ступеней. К примеру, зона второй ступени может перекрываться зоной первой ступени возле разъединителя.

Назначение токовой максимальной

Временной интервал включения МТЗ устанавливается таким образом, что наибольшая задержка приходится на 1-ю ступень (подающая трансформаторная подстанция). Соответственно, каждая следующая ступень будет срабатывать быстрее предшествующей.

Разница максимальной временной задержки включения между ступенями называется избирательностью или селективностью.

Селективность необходима для обеспечения непрерывной подачи напряжения по максимальному числу линий электропередач. Она сужает повреждённый участок и локализует его между ближайшими устройствами коммутации.

Назначение максимальной защиты

При включении мощных электрических двигателей, может произойти кратковременная перегрузка, которая устраняется самостоятельно. В этом случае временная задержка и устройство выключения по минимальным параметрам напряжения сохраняют электрическую подачу, не допуская выключения сети.

При коротком замыкании напряжение падает резко, при запуске двигателя такое падение не наблюдается.

Токовые параметры выбираются по минимальному значению тока короткого замыкания по всей линии. Это делается затем, чтобы МТЗ не включалась при пуске электрических двигателей.

Максимальная перегрузка возникает в трёх случаях:

  1. Замыкание одной фазы на землю.
  2. Замыкание нескольких фаз.
  3. Увеличенная мощность.

Итак, МТЗ применяется для защиты ЛЭП, кабельных жил и шин в трансформаторах, силовых установках с потребляемой мощностью от шести до десяти тысяч вольт.

Чем отличается от отсечки тока

Назначение токовой максимальной

В электрических цепях, для защиты от К.З., используют устройства отсечки тока. Работа основана на таком же принципе – обесточивание линии при резкой перегрузке.

Разница в том, что избирательность МТЗ продиктована периодом задержки, а отсечка при коротком замыкании обесточивает линию практически мгновенно. Время реакции и избирательность токовой отсечки зависит от токовых и временных характеристик автоматов защиты.

Типы МТЗ

Разделяют на несколько видов:

  1. Время задержки не зависит от тока. Это означает, что при различных перегрузках в сети время задержки не меняется.
  2. Задержка зависит от тока. Чем выше токовая величина, тем быстрее срабатывает реле. Это даёт возможность более точно определять стойкость к перегрузке составляющих элементов линии, а значит выполнять защиту более эффективно.
  3. Зависимость задержки ограничена. Графически это парабола, совмещённая с линией. Вертикаль – это ток, горизонталь – время. Основание близко к параболе, но с определённого значения переходит в линию. Так добиваются точных параметров реакции при незначительных перегрузках (запуск группы электрических двигателей).
  4. Реле блокирует минимальное значение напряжения. Этим обеспечивается бесперебойное электроснабжение при пусковых нагрузках.

По типу максимального тока в оперативных линиях:

  1. Постоянный ток.
  2. Переменный ток.

По количеству МТЗ:

  • Три реле. Защита осуществляется при замыкании как одной, так и нескольких фаз.
  • Два реле. Стоимость меньше трёхлинейных реле, но уступают в показателе надёжности.
  • Одно реле. Стоимость ещё меньше. Также ещё меньше надёжность. Недопустимо использование на важных отрезках линии, в связи с недостаточной чувствительностью.
  1. КА – токовое реле.
  2. КТ – временное реле.
  3. КЛ – дополнительное реле (ставится, если коммутации контактов мало).
  4. КН – реле указания.
  5. SQ – размыкающий контакт цепей с большой мощностью (силовой аппарат коммутации). Встраивается в схему, поскольку релейные контакты для разрыва такой линии не предназначены.

Реле максимальной токовой защиты широко применяются в процессорах, усилителях и прочей полупроводниковой аппаратуре.

Современные технологии дают возможность точнее определять токовые параметры защиты.

Мы коротко разобрали устройство, предназначение и работу максимальной защиты. Определили отличие от отсечки тока. Эти схемы обладают своими плюсами и минусами.

К примеру, плюсом токовой максимальной защиты будет не прекращающаяся подача электропитания при вторичных запусках двигателей после кратковременного прекращения питания, но временная задержка отрицательно сказывается на работе ВЛЭП.

Эти недостатки устраняются отсечкой тока или применением токовой максимальной защитой с зависимой задержкой. Беспрерывное функционирование линий электроснабжения даёт совместное использование частотной автоматической разгрузки, ТО, МТ3, ТЗНП и прочее.

Это вся информация, которой мы хотели поделиться касательно устройства, назначения и принципа действия максимальной токовой защиты.

Что такое максимальная токовая защита и какое у нее назначение

Важной частью электрических схем является обеспечение надежного отключения питания при ненормальных режимах работы или при перегрузке. К таким системам относятся релейные защиты (РЗиА). В них входит спектр разнообразных схем, которые реагируют на различные отклонения от нормальных условий, например, междуфазные или замыкания на землю, повышенное потребление мощности и пр. В этой статье будет рассмотрен один из методов защиты от перегрузки линии электропередач. Узнайте, что такое максимальная токовая защита, для чего она нужна и чем отличается от токовой отсечки.

Устройство и принцип действия

Принцип работы заключается в срабатывании датчика (реле) тока при превышении Iуставки на защищаемом участки линии, после чего для обеспечения селективности с определенной задержкой срабатывает реле времени.

Что такое максимальная токовая защита и какое у нее назначение, Коломна (фото)

Где она применяется? Максимальную токовую защиту устанавливают в начале линии, то есть со стороны генератора или трансформатора питающей подстанции.

Что такое максимальная токовая защита и какое у нее назначение, Коломна (фото)

Важно! Зона действия МТЗ лежит в пределах между источником питания (ТП или генератором) и потребителем (ТП или другим ВВ оборудованием). При этом она устанавливается со стороны источника, а не потребителя. Но зоны действия ступеней могут пересекаться друг с другом. Например, 1 ступень часто перекрывает зону действия второй ступени вблизи от разъединителя, где Iкз почти равны с предыдущим участком линии.

Выдержка времени срабатывания защиты подбирается так, что первая ступень (на питающей ТП) срабатывает через самый большой промежуток времени, а каждая последующая быстрее предыдущей.

Интересно: разница выдержки времени срабатывания на ближайшей к источнику питания от следующей после нее МТЗ называется ступенью селективности.

Обеспечение селективности важно для бесперебойной подачи электропитания по как можно большему количеству электрических линий. С её помощью отключаемая часть уменьшается и локализуется на участке между коммутационными аппаратами как можно ближайшими к поврежденному участку.

Что такое максимальная токовая защита и какое у нее назначение, Коломна (фото)

При этом, при возникновении кратковременных самоустраняемых перегрузок, связанных с пуском мощных электродвигателей, выдержка времени и отключение по минимальному напряжению должны обеспечить подачу электроэнергии в сеть без её отключения. При КЗ, напряжения резко уменьшаются, а при пуске двигателей такой просадки обычно не происходит.

Выбор уставок по току происходит по наименьшему Iкз из всей цепи, учитывая особенности работы подключенного оборудования. Это нужно опять же для того, чтобы максимальная токовая защита не сработала при самозапуске электродвигателей.

Перегрузка может возникнуть по трем причинам:

Итак, максимальная токовая защита необходима для предотвращения разрушения линий электропередач, жил кабелей и шин на подстанциях и потребителях электроэнергии, таких как мощные электродвигатели 6 или 10 кВ и прочие электроустановки.

Отличия от токовой отсечки

Защита линий от коротких замыканий также осуществляется с помощью токовой отсечки. Принцип её работы аналогичен — отключение электричества при перегрузке линии. Основным отличием является то, что селективность максимальной токовой защиты обеспечивается задержкой времени, а токовая отсечка отключает напряжение почти мгновенно при возникновении КЗ. При этом время срабатывания и селективность отсечки определяется номиналами и уставками защитных аппаратов и их время-токовыми характеристиками.

Более подробно вопрос рассмотрен на видео:

Виды МТЗ и схемы

К основным видам максимальной токовой защиты относят:

  • С независимой выдержкой времени от тока. Из названия ясно, что при любых перегрузках величина выдержки времени остаётся неизменной.
  • С зависимой выдержкой времени. Время зависит нелинейно от величины тока, по принципу: больше ток — быстрее отключение. Такая система позволяет точнее учитывать перегрузочную способность элементов цепи и осуществлять защиту от перегрузки.
  • С ограничено-зависимой выдержкой времени. График зависимости состоит из двух частей. У него параболическая форма (как во втором случае), совмещенная с прямой линией (как в первом случае), где по вертикальной оси расположен ток, а по горизонтальной время. При этом его основание стремится к параболе, а с определенных схемой пределов переходит в прямую. Так достигается точная настройка срабатывания при малых превышениях, например при подключении мощных потребителей и групповом пуске электродвигателей.
  • С блокировкой минимального напряжения. Также нужна для предотвращения отключения питания при пусковых токах. При возрастании тока выше уставки, если реле напряжения не срабатывает по минимальному значению (как при КЗ), то и напряжение не отключается.
Читайте также  Как правильно выбрать энергосберегающую лампу

По роду тока в оперативных цепях выделяют МТЗ:

  • с постоянным оперативным током;
  • с переменным оперативным током.

По количеству реле различают максимальные токовые защиты на базе:

  • Трёх реле. Обеспечивают защиту и при многофазном и при однофазном замыканиях.Что такое максимальная токовая защита и какое у нее назначение, Коломна (фото)
  • Двух реле. Дешевле предыдущих, но не дают такой же надежности, особенно при однофазных замыканиях.Что такое максимальная токовая защита и какое у нее назначение, Коломна (фото)
  • Одного реле. Еще дешевле и еще менее надежны, не применимы на ответственных участках линии. У них малая чувствительность и применяется в распределительных сетях от 6 до 10 кВ и для защиты электродвигателя.Что такое максимальная токовая защита и какое у нее назначение, Коломна (фото)
  • KA — реле тока;
  • KT — реле времени;
  • KL — промежуточное реле, устанавливается если не хватает коммутационной способности контактов;
  • KH — указательное реле (блинкер);
  • SQ — блок контакт для размыкания мощных цепей, типа катушки YAT — силового коммутационного аппарата. Устанавливается так как контакты реле не рассчитываются на размыкание таких цепей.

Современные защиты часто уходят от применения релейных схем из-за особенностей их надежности. Поэтому используются МТЗ на операционных усилителях, микропроцессоре и другой полупроводниковой технике.

Что такое максимальная токовая защита и какое у нее назначение, Коломна (фото)

Современные решения позволяют более точно выставлять уставки по току и время-токовые характеристики защит.

Заключение

Мы кратко рассмотрели назначение, область применения и принцип действия максимальной токовой защиты (МТЗ) и её разницу с токовой отсечкой. У каждой схемы есть свои достоинства и недостатки. Например, достоинством МТЗ является то, что она не отключает напряжения при повторных пусках двигателей после исчезновения питания, но её выдержка времени может быть губительна для воздушной линии или линии другого типа. При этом последнее может компенсироваться либо токовой отсечкой, либо вариантом МТЗ с зависимой выдержкой времени. В любом случае бесперебойность работы электрической сети обеспечивается совокупностью систем РЗиА среди которых:

  • АЧР (автоматическая частотная разгрузка);
  • ТЗНП (при нулевой последовательности — замыканиях на землю);
  • МТЗ;
  • ТО;
  • Дифзащиты и прочее.

Некоторые из них мы уже рассматривали в статьях ранее.

Теперь вы знаете, что такое максимальная токовая защита, как она устроена и работает. Надеемся, предоставленные схемы и описание помогли вам разобраться в данном вопросе!

Максимальная токовая защита: МТЗ, принцип действия, реализация, схемы, выбор уставок

Максимальная токовая защитаПри коротком замыкании ток в линии увеличивается. Этот признак используется для выполнения токовых защит. Максимальная токовая защита (МТЗ) приходит в действие при увеличении тока в фазах линии сверх определенного значения.

Токовые защиты подразделяются на МТЗ, в которых для обеспечения селективности используется выдержка времени, и токовые отсечки, где селективность достигается выбором тока срабатывания. Таким образом, главное отличие между разными типами токовых защит в способе обеспечения селективности.

Максимальная токовая защитаРис. 4.1.1

МТЗ с независимой выдержкой времени

МТЗ – основная защита для воздушных линий с односторонним питанием. МТЗ оснащаются не только ЛЭП, но также и силовые трансформаторы, кабельные линии, мощные двигатели напряжением 6, 10 кВ.

Максимальная токовая защита

Рис. 4.2.1

Расположение защиты в начале каждой линии со стороны источника питания. На рис. 4.2.1 изображено действие защит при КЗ в точке К. Выдержки времени защит подбираются по ступенчатому принципу и не зависят от величины тока, протекающего по реле.

Схемы защиты МТЗ

Трехфазная схема защиты МТЗ на постоянном оперативном токе

Схема защиты представлена на рис.4.2.2: Основные реле:

  • Пусковой орган – токовые реле КА.
  • Орган времени – реле времени КТ.

Вспомогательные реле:

  • KL – промежуточное реле;
  • KH – указательное реле.

Максимальная токовая защита

Максимальная токовая защита

Рис. 4.2.2

Промежуточное реле устанавливается в тех случаях, когда реле времени не может замыкать цепь катушки отключения YAT из-за недостаточной мощности своих контактов. Блок-контакт выключателя SQ служит для разрыва тока, протекающего по катушке отключения, так как контакты промежуточных реле не рассчитываются на размыкание.

Двухфазные схемы защиты МТЗ на постоянном оперативном токе

В тех случаях, когда МТЗ должна реагировать только при междуфазных КЗ, применяются двухфазные схемы с двумя или одним реле, как более дешевые.

Двухрелейная схема

Максимальная токовая защита

Максимальная токовая защита

Достоинства

1. Схема реагирует на все междуфазные КЗ на линиях.

2. Экономичнее трехфазной схемы.

Недостатки

Меньшая чувствительность при 2 – фазных КЗ за трансформатором с соединением обмоток Y/–11 гр. (В два раза меньше чем у трехфазной схемы).

Максимальная токовая защита

Рис. 4.2.4

При необходимости чувствительность можно повысить, установив третье токовое реле в общем проводе токовых цепей. Чувствительность повышается в два раза – схема становиться равноценной по чувствительности с трехфазной.

Схемы широко применяются в сетях с изолированной нейтралью, где возможны только междуфазные КЗ.

двухфазные схемы применяются в качестве защиты от междуфазных КЗ и в сетях с глухозаземленной нейтралью, при этом для защиты от однофазных КЗ устанавливается дополнительная защита, реагирующая на ток нулевой последовательности.

Одно-релейная схема МТЗ

Максимальная токовая защита

Максимальная токовая защита

Схема реагирует на все случаи междуфазных КЗ.

Достоинства

Недостатки

  1. Меньшая чувствительность по сравнению с 2 – релейной схемой при КЗ между фазами АВ и ВС.
  2. Недействие защиты при одном из трех возможных случаев 2 – фазных КЗ за трансформатором с соединением обмоток Y/–11 гр.
  3. Более низкая надежность – при неисправности единственного токового реле происходит отказ защиты. Схема применяется в распределительных сетях 6…10 кВ и для защиты электродвигателей.

Максимальная токовая защита

Рис. 4.2.6

Выбор тока срабатывания защиты МТЗ

Защита должна надежно срабатывать при повреждениях, но не должна действовать при максимальных токах нагрузки и её кратковременных толчках (например, запуск двигателей).

  • Слишком чувствительная защита может привести к неоправданным отключениям.
  • Главная задача при выборе тока срабатывания состоит в надежной отстройке защиты от токов нагрузки.

Существуют два условия определения тока срабатывания защиты.

Первое условие. Токовые реле не должны приходить в действие от тока нагрузки:

Iс.з>Iн.макс, (4.1)

где Iс.з – ток срабатывания защиты (наименьший первичный ток в фазе линии, необходимый для действия защиты);

Iн.макс – максимальный рабочий ток нагрузки.

Второе условие. Токовые реле, сработавшие при КЗ в сети, должны надёжно возвращаться в исходное положение после отключения КЗ при оставшемся в защищаемой линии рабочем токе.

При КЗ приходят в действие реле защит I и II (рис.4.2.1). После отключения КЗ защитой I прохождение тока КЗ прекращается и токовые реле защиты II должны вернуться в исходное положение.

Ток возврата реле должен быть больше тока нагрузки линии, проходящего через защиту II после отключения КЗ.

И этот ток в первые моменты времени после отключения КЗ имеет повышенное значение из–за пусковых токов электродвигателей, которые при КЗ тормозятся вследствие понижения (при КЗ) напряжения:

Максимальная токовая защита

Iвоз>kзIн.макс . (4.2)

Увеличение Iн.макс, вызванное самозапуском двигателей, оценивается коэффициентом запуска kз.

Учет самозапуска двигателей является обязательным.

При выполнении условия (4.2) выполняется и условие (4.1), так как Iвоз<Iс.з. Поэтому для отстройки защиты от нагрузки за исходное принимается условие (4.2):

Iвоз=kнkзIн.макс, (4.3)

где – коэффициент надежности, учитывающий возможную погрешность в величине тока возврата реле, kн=1,1…1,2.

Ток срабатывания защиты зависит от коэффициента возврата, для снижения Iс.з необходимо увеличивать kвоз, он должен быть на уровне от 0,85 и выше.

Определение величины Iн.макс индивидуально для конкретного защищаемого объекта, ниже приведены два примера

1. Параллельные линии: Iн.макс=Iнагр.

Максимальная токовая защита

Рис. 4.2.8

2. Линии, питающие потребителя: Iн.макс=I1+I2.

Максимальная токовая защита
Рис. 4.2.9

Чувствительность защиты МТЗ

Ток срабатывания защиты Iс.з проверяется по условию чувствительности защиты.

Максимальная токовая защита

Рис. 4.2.10

Значение kч для различных типов защит нормируется. В основной зоне kч как правило равен 1,5; в зоне резервирования допускается 1,2.

Выдержка времени защиты МТЗ

Для обеспечения селективности выдержки времени МТЗ выбираются по ступенчатому принципу (см. рис. 4.2.1). Разница между временем действия защит двух смежных участков называется ступенью времени (ступенью селективности):

t=t2–t1. (4.7)

Ступень времени t должна быть такой, чтобы при КЗ на линии w2, МТЗ II (см. рис. 4.2.1) не успевала сработать.

Определение ступени селективности времени

При КЗ в точке К защита I работает в течение времени

tзI=tввI+tпI+tвI, (4.8)

где tввI – выдержка времени защиты I;

tпI – погрешность в сторону замедления реле времени защиты I;

tвI – время отключения выключателя Q1.

Условие несрабатывания защиты II при КЗ на линии w2

tввII>tввI+tпI+tвI. (4.9)

Выдержка времени защиты II может быть определена как

tввII=tввI+tпI+tвI+tпII+tзап, (4.10)

где tпII – погрешность в сторону снижения выдержки времени защиты II; tзап – время запаса.

Таким образом, минимальная ступень времени t может быть вычислена как

t=tввII – tввI=tпI+tвI+tпII+tзап. (4.11)

Читайте также  Какие бывают выключатели света?

По формуле (4.11) определяется ступень времени для защит с независимой характеристикой времени срабатывания от тока.

Рекомендуется принимать t =0,35…0,6 с.

Выбор времени действия защит МТЗ

Для МТЗ с независимой выдержкой времени выдержка времени защит вычисляется по формуле (4.12), расчет начинается от МТЗ, установленных у потребителей электроэнергии (см. рис. 4.2.11):

tвв(n)= tвв(n–1)+ t. (4.12)

Максимальная токовая защита

Рис. 4.2.11

Максимальная токовая защита

В нормальном режиме по линии, в трансформаторе, двигателе течет рабочий ток, значение которого известно и определяется номинальными параметрами.

Однако, порой возникают аварийные, переходные ситуации, когда происходят перерывы питания, вследствие коротких замыканий, самозапуска, перегрузок. Значение тока повышается до величины, которая может привести к нарушению работоспособности электрической сети, выхода из строя электрооборудования.

Чтобы не происходило подобных аварий, необходимо на этапе проектирования предусмотреть методы защиты от переходных токов. Для этого служит релейная защита, а в частности защита от токов короткого замыкания — максимальная токовая защита. Эта защита также относится к токовым, как и токовая отсечка.

На линиях с односторонним питанием МТЗ устанавливается в начале линии со стороны источника питания. Так как сеть может состоять из нескольких линий, то на каждой из них ставят свой комплект защит. При повреждении на одном из участков линии сработает защита этого участка и отключит линию. Защиты других линий отстроены по времени, таким образом соблюдается селективность. Они отключатся, не успев сработать. Время срабатывания увеличивается в направлении от потребителя к системе.

На линиях с двухсторонним питанием защита МТЗ является дополнительной и достижение селективности одними лишь средствами выдержки времени является невозможным. Поэтому в таких сетях применяются направленные защиты.

Классификация МТЗ

Максимальные токовые защиты классифицируются на трехфазные и двухфазные (в зависимости от схемы исполнения), в зависимости от способа питания (с постоянным или переменным опертоком), защиты с зависимой и независимой характеристикой.

Принцип действия максимальной токовой защиты

При достижении током величины уставки подается сигнал на срабатывание реле времени с заданной выдержкой времени. Затем после реле времени сигнал идет на промежуточное реле, которое мгновенно отправляет ток в цепь отключения выключателя.

У зависимых защит выдержка времени задается уставкой на реле, у независимых — выдержка зависит от величины тока. Зависимые защиты проще отстраивать и согласовывать.

Схема защиты МТЗ

схема максимальной токовой защиты

На рисунке выше приведена схема максимальной токовой защиты — токовые цепи и цепи управления.

Параметры и расчет максимальной токовой защиты

МТЗ не может совмещать в себе функцию защиты от перегрузки, так как действие МТЗ должно происходить по возможности быстрее, а защита от перегрузки должна действовать, не отключая допустимые кратковременные токи перегрузки или пусковые токи при самозапуске электродвигателей.

  1. То есть первое условие выбора МТЗ — отстройка от максимального рабочего тока нагрузки
  2. После срабатывания защиты реле должно вернуться в рабочее положения. Ток возврата должен быть больше максимального рабочего тока, с учетом самозапуска, после предотвращения нарушения снабжения
  3. Ток срабатывания защиты равен коэффициенту запаса отнесенный к коэффициенту возврата и умноженный на коэффициент запуска и максимальный рабочий ток
  4. Ток срабатывания реле зависит от коэффициента схемы (зависит от реле), тока срабатывания защиты отнесенных к коэффициенту трансформатора тока
  5. Чувствительность защиты определяется отношением минимального тока короткого замыкания в конце зоны защиты к току срабатывания защиты
  6. Ступень времени для согласования выдежек времени зависит от выдержки времени соседней защиты, погрешности замедления реле времени соседней защиты, времени отключения выключателя соседней защиты. Для защит с независимой выдержкой времени это время может быть 0,4-0,5с, для защит с зависимой — 0,6-1с

К достоинствам МТЗ относится их простота и наглядность, надежность, невысокая стоимость. К недостаткам можно отнести большие выдержки времени вблизи источников питания, хотя именно там токи короткого замыкания должны отключаться быстро.

Максимальная токовая защита является основной в сетях до 10кВ, однако, применение она нашла и в сетях выше 10кВ.

2020 Помегерим! — электрика и электроэнергетика

Максимальная токовая защита

МТЗ (расшифровка – максимальная токовая защита) – распространенная техника предохранения электросетей от последствий краткосрочных перегрузок и замыканий. Она может быть задействована в разветвленных сетях, асинхронных двигателях. Электрику нужно знать особенности механизма и его отличия от других предохранительных методов.

Реле времени

Принцип действия

МТЗ – это разновидность защитного механизма электросети с использованием реле, применяемая при угрозе короткого замыкания на некотором отрезке электроцепи.

Принцип действия максимальной токовой защиты достаточно схож с таковым у механизма отсечки. Если при использовании последней ток вырубается сразу же, то при применении МТЗ выключение происходит по истечении некоторого временного отрезка. Он называется выдержкой времени. То, какое значение он примет, определяется близостью места, где происходит инцидент, к поставщику питания. Чем дальше располагается отрезок, тем меньше число. Значение, на которое показатель близлежащего участка отличается от такового для удаленного (ступень селективности), описывает период, по истечении которого защита включается на ближнем участке (отключая и дальний), если она не активизировалась на дальнем, на котором случился инцидент КЗ.

Важно! Показатель ступени надо делать небольшим, чтобы система успела включиться до причинения инцидентом серьезных повреждений электросети.

Отличия от токовой отсечки

В МТЗ используются реле времени, позволяющие игнорировать скачки напряжения, что невозможно при отсечке (которая срабатывает не только при эпизоде короткого замыкания, но и при повышении тока любой другой природы и продолжительности). Кроме того, использование механизма отсечки требует задействования оператора для возобновления нормального функционирования системы. Реле сами приходят в первоначальное состояние, когда причина размыкания будет ликвидирована.

Разновидности максимально-токовых защит

Ориентируясь на условия работы в конкретной электросети, можно выбрать один из четырех типов системы.

МТЗ с независимой от тока выдержкой времени

Параметр задержки здесь неизменен, период активации зависит только от ступени селективности: на каждом последующем отрезке время увеличивается на эту величину.

МТЗ с зависимой от тока выдержкой времени

Используется расчет выдержки по нелинейной формуле. Параметр зависит от величины тока на обмотках. Используется в системах, где предохранение от избыточных нагрузок имеет особенную значимость для безопасности.

МТЗ с ограниченно-зависимой от тока выдержкой времени

Здесь совмещены две компоненты: не зависящая от тока часть и зависящая, причем у последней время-токовая характеристика имеет вид гиперболы. Чем больше перегрузка, тем более пологий вид имеет графическое представление. Такая установка используется в высокомощных электромоторах.

МТЗ с пуском (блокировкой) от реле минимального напряжения

Здесь инициатором размыкания контактов становится разность потенциалов. Уставка привязывается к падению напряжения ниже определенной границы.

Задание уставок

Защита МТЗ определяется тем, насколько правильно выбрана уставка – величина тока, при достижении которой включается функция. При определении ее значения учитывают назначение сети (например, при самостоятельном запуске электродвигателя после временного выключения питания показатель может превышать номинальный, тогда МТЗ не должна выключать его) и минимальный ток замыкания в ней. При зависимой (полностью или ограниченно) время-токовой характеристике ориентируются на значение, когда реле перегрузки вот-вот сработает, а время задают, ориентируясь на независимую часть.

Важно! Иногда блокировка в защитной системе ставится с ориентацией на напряжение, тогда параметром срабатывания, задаваемым в качестве уставки, становится оно.

Реализация

В основном, систему реализуют с применением устройств, совмещающих функции пуска и задержки времени, либо с помощью сочетания нескольких разных реле, каждое из которых выполняет одну из этих функций. Сейчас все чаще применяются микропроцессоры, реализующие, помимо обозреваемого, еще ряд процессов релейной защиты.

Схемы защиты МТЗ

Применяется несколько вариантов конструкций, различающихся устройством.

Трехфазная схема защиты МТЗ на постоянном оперативном токе

Трехфазная конструкция

В главный блок входят два реле: времени и пуска. Используются также указательное реле и еще одно добавочное, ставящееся тогда, когда временное реле неспособно замкнуть цепочку катушки выключения.

Двухфазные схемы защиты МТЗ на постоянном оперативном токе

Они применяются, когда нужно, чтобы система включалась лишь при замыкании между фазами. Существуют схемы с одиночным реле и с парой.

Двухрелейная схема

Ее плюс – реагирование на любые межфазовые замыкания. Минус – меньшая восприимчивость при двухфазных замыканиях за трансформатором. Повысить ее вдвое можно, поставив третье реле. Схема в основном используется для конструкций с изолированной нейтралью – случающиеся в них замыкания происходят только между фазами. Возможно применение при глухом заземлении, но тогда для предотвращения однофазного замыкания ставится добавочная конструкция, срабатывающая при токе нулевой последовательности.

Одно-релейная схема МТЗ

Плюс схемы – легкость конструирования. Минусы – наименее высокая чувствительность, несрабатывание при некоторых типах замыканий с двумя фазами.

Выбор тока срабатывания защиты МТЗ

Выбор осуществляется с расчетом, чтобы установка уверенно срабатывала при повреждающих воздействиях, но не проявляла активности при недолгих толчках (к примеру, когда запускается электродвигатель) или высоком токе нагрузки. Дифференциация последнего от ситуации, когда должна активизироваться защита, является основной задачей. Также установка не должна быть излишне восприимчивой, иначе цепь будет отключаться, когда это не нужно.

Читайте также  Почему не работает ультрафиолетовая лампа для ногтей?

Должны соблюдаться условия:

  • реле не должны активизироваться нагрузочным током, поэтому параметр, при котором срабатывает МТЗ, должен быть больше максимального нагрузочного показателя;
  • возвратный ток реле должен превышать нагрузочное значение, идущее по защите после окончания замыкания – это нужно для возврата реле в начальное положение.

Чувствительность защиты МТЗ

Значение коэффициента, вариабельно в зависимости от вида защиты. В главной зоне коэффициент обычно равен 1,5, в резервной – его часто берут равным 1,2.

Выдержка времени защиты МТЗ

Для ее нахождения проводится следующий расчет. Узнается время работы первой из защит при замыкании:

где:

  • Т1 – искомое время,
  • tп1 – погрешность выдержки,
  • to1 – время вырубания выключателя,
  • tв1 – выдержка для этого реле.

Вторая защита не сработает при условии, что время выдержки для нее будет больше Т1, т.е. tв2>T1.

где:

  • tп2 – погрешность второго реле,
  • tз – запасное время.

Таким образом, ступень будет равна Т=tв2-tв1=tп1+tо1+tп2+tз (для независимой время-токовой характеристики).

Выбор времени действия защит МТЗ

Время действия

Используется формула:

На картинке выше разница между временем t2 и t1, t3 и t2 и любыми другими соседними идентична.

Примеры и описание схем МТЗ

Для защиты разных компонентов сетей с питанием, поступающим с одной стороны, используются схемы различных типов.

Однорелейная на оперативном токе

Схема с одним реле на оперативном токе

Применяется реле пуска, реагирующее на изменения разности фазовых потенциалов. Плюсами являются ее простота и малый расход ресурсов – нужны только одно реле и два кабеля. Минусы – невысокая восприимчивость и то, что, если отказал какой-то элемент, фрагмент линии теряет предохранение. Схема подойдет для сетей с напряжением до 10 кВ.

Двухрелейная на оперативном токе

Схема с парой реле

Эта схема, как и предыдущая, защищает электролинии от последствий короткого замыкания между фазами. Цепи в ней формируют усеченную звезду. Она надежна, но, как и предыдущая, не очень чувствительна.

Трехрелейная

Это наиболее надежная и единственная подходящая для конструкций с заземленной наглухо нейтралью схема.

Хотя отсечка тока эффективнее предотвращает короткие замыкания, применение обозреваемого метода больше подходит для предохранения разветвленных электролиний. Для максимально эффективной работы необходимо правильно задать в схеме уставки.

Видео

Максимальные токовые защиты

Принцип действия максимально токовых защит (МТЗ) основан на том, что при возникновении КЗ ток увеличивается и начинает превышать ток нагрузочного режима. Селективность действия при этом достигается выбором выдержек времени.

В пределах каждого элемента МТЗ устанавливается как можно ближе к источнику питания.

Схемы МТЗ классифицируются по ряду признаков:

1) способу питания оперативных цепей (на постоянном или переменном

2) способу воздействия на привод выключателя – прямого или косвенного действия;

3) характеру зависимости выдержки времени от тока – защиты с независимой и зависимой выдержкой времени;

4) способу соединения обмоток ТА и обмоток реле; 5) назначению – защиты от КЗ и защиты от перегрузок током.

В качестве пусковых органов МТЗ используют токовые реле.

Расчёт параметров МТЗ

Максимальная токовая защита линий получила наибольшее распространение в радиальных сетях с одним источником питания. Селективность максимальной токовой защиты обеспечивается соответствующим выбором тока и времени срабатывания. В радиальной сети с односторонним питанием защиты устанавливаются на каждой линии. Защита наиболее удалённой от источника питания линии имеет наименьший ток срабатывания и наименьшую выдержку времени. Защита каждой последующей линии имеет выдержку времени больше выдержки времени предыдущей защиты.

Ток срабатывания защиты выбирается больше максимального рабочего тока защищаемой линии. При этом защита обычно чувствительна к коротким замыканиям на предыдущих участках сети.

Параметрами срабатывания максимальной токовой защиты являются ток

и время t с.з срабатывания защиты.

Время срабатывания (выдержка времени) защиты i -й линии в общем случае

выбирается на ступень селективности ∆ t

больше наибольшей выдержки времени

t с.з( i − 1)max предыдущих защит

t с.з i = t с.з ( i − 1)max

Ступень селективности ∆ t состоит из составляющих

∆ t = t 0в ( i − 1) + t погр i

( i − 1) -го выключателя (при

паспортных данных принимают t откл = 0,06 с); t погр i – отрицательная

уменьшения t с.з ) погрешность i -й защиты; t погр ( i − 1) – положительная (в сторону увеличения t с.з ) погрешность ( i − 1) -й защиты; t и – время инерции i -й защиты (в

некоторых источниках обозначается как время возврата защиты, принимается равным 0,05 с); t зап – время запаса надёжного срабатывания реле (ориентировочно t зап = 0,1 с). Погрешность срабатывания цифровых реле по времени не превышает

2% от значения уставки.

В зависимости от используемых аппаратов (выключателей и реле), ∆ t может иметь различные значения. При использовании вторичных реле косвенного действия ∆ t не превышает 0,2-0,6 с. При использовании менее точных реле прямого действия ∆ t может достигать 0,8-1 с.

Максимальная токовая защита может иметь независимую от тока, а, следовательно, и от места КЗ выдержку времени или зависимую от тока КЗ характеристику выдержки времени. Наличие зависимой от тока характеристики выдержки времени принципиально позволяет ускорить отключение больших токов КЗ.

Различают МТЗ с независимой и зависимой характеристиками времени срабатывания.

МТЗ с независимой характеристикой времени срабатывания

МТЗ с независимой характеристикой времени срабатывания выполняется на базе реле РТ-40, у которого ток уставки ( I уст. ) регулируется плавно и время

замыкания не зависит от величины тока.

Селективность действия данного вида МТЗ достигается выбором выдержек времени согласно описанному правилу по выражениям (3.1) и (3.2). Согласование времени срабатывания МТЗ рассмотрим на примере, изображённом на рис. 3.1.

Рис. 3.1. Согласование времени МТЗ линий Л1 и Л2

Ступень селективности чаще всего принимается равной 0,5 с при использовании электромеханических устройств защиты и 0,3 с при использовании микропроцессорных устройств.

МТЗ с зависимой характеристикой времени срабатывания

МТЗ с зависимой характеристикой времени срабатывания выполняется на базе РТ-80(83,85), у которых ток уставки ( I уст. ) регулируется ступенчато и время

замыкания контактов зависит от величины протекающего по реле тока. Чем

больше ток, тем быстрее срабатывает реле. Для расчёта времени действия защиты 1 (см. рис. 3.2) на границе зоны действия (точка К 1 ) необходимо знать время действия защиты 2 при КЗ в точке К 1 , т.е. t сз К1 2 , тогда t сз К1 1 ≥ t сз К1 2 +∆ t . Это соотношение выполняется во всём интервале действия РЗ 2 , когда РЗ 1 выступает в роли резервной.

Рис. 3.2. Согласование МТЗ с зависимой выдержкой времени

Определение t сз К1 2 производится по расчётным кривым для реле РТ-80(83, 85).

Время действия защиты 1 должно быть большим времени действия защиты 2 на том участке сети, где возможна их совместная работа (на рис. 3.2 это линия

Достоинством данного вида МТЗ является то, что большее значение I кз

отключается с меньшей выдержкой времени, такая ситуация характерна для головных участков сети с односторонним питанием.

Недостаток заключается в том, что реле РТ-80(83, 85) более сложны конструктивно и более дорогостоящие по сравнению с реле РТ-40.

Ток срабатывания максимальной токовой защиты

Ток срабатывания максимальной токовой защиты ( I сз ) – это минимальный ток в фазах линии, при котором приходит в действие пусковой орган защиты. Ток I сз выбирается больше максимального рабочего тока защищаемой линии с учётом

необходимости возврата защиты после отключения КЗ защитой предыдущего участка сети ( I сз должен быть меньше I кз ).

Важным условием является обеспечение несрабатывания МТЗ при максимальных токах ( I max нагр. ) и пусковых токов ( I пуск. ) нагрузки. Для этого необходимо выполнение следующих условий:

1) I сз > I max нагр. – пусковые органы защит не должны приходить в действие

при максимальном рабочем токе нагрузки; 2) пусковые органы защиты, пришедшие в действие при внешнем КЗ,

должны вернуться в исходное состояние после его отключения и снижения до I max нагр. . Для выполнения этого условия ток возврата защиты I вз , – это наибольший первичный ток, при котором пусковой орган возвращаются в исходное состояние,

– должен удовлетворять требованию:

I вз > k сз I max нагр. ,

где k сз ≥ 1,1 ÷ 1,3 – коэффициент самозапуска двигательной нагрузки, учитывает возрастание рабочего тока ( I max нагр. ) за счёт одновременного пуска всех тех электродвигателей, которые затормозились при снижении напряжения во время КЗ.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: