Что такое релейная защита и для чего она нужна?

Для чего нужна релейная защита?

Для чего нужна релейная защита?При проектировании и эксплуатации любой электрической системы приходится считаться с возможностью возникновения в ней повреждений и ненормальных режимов работы, которые могут привести к возникновению в системе аварий, сопровождающейся недоотпуском электроэнергии потребителям, недопустимым ухудшением ее качества или разрушением оборудования.

Предотвращение возникновения аварии или ее развития часто может быть обеспечено путем быстрого отключения поврежденного элемента. По условиям обеспечения бесперебойной работы неповрежденной части системы время отключения поврежденного элемента должно быть небольшим и часто составляет доли секунды.

Совершенно очевидно, что человек обслуживающий установку, не в состоянии за столь короткое время отметить возникновение повреждения и устранить его. Поэтому электрические установки снабжаются специальными электрическими автоматами – реле защиты.

Назначением релейной защиты является по возможности скорейшее отключение поврежденного элемента или участка энергосистемы от ее неповрежденных частей . Если повреждение не грозит немедленным разрушением защищаемого объекта, не нарушает непрерывности электроснабжения и не представляет угрозы по условиям техники безопасности, то устройства защиты могут действовать не на отключение, а на сигнал, предупреждающий дежурный персонал о неисправности.

Устройства релейной защиты должны действовать на сигнал или отключение и в случае ненормальных режимом работы сети, если такие режимы могут представлять опасность для оборудования.

Требования к релейной защите

К релейной защите предъявляются следующие требования по селективности, чувствительности, быстродействию и надежности:

1) Селективность действия (избирательность) – способность устройства релейной защиты срабатывать при повреждении в зоне его действия и не срабатывать при внешних повреждениях и нагрузочных режимах, т.е. селективным называется такое действие защиты, при котором она отключает только поврежденный элемент посредством его автоматических выключателей. Все другие части системы должны при этом оставаться включенными.

Все устройства релейной защиты делятся на 2 класса по селективности:

  • защиты с относительной селективностью – селективность обеспечивается выбором параметров срабатывания. Сюда относятся максимальнотоковые и дистанционные защиты;
  • защиты с абсолютной селективностью – селективность обеспечивается принципом действия – все виды дифференциальных защит.

2) Чувствительность – способность устройства релейной защиты реагировать на минимальные значения аварийных параметров.

Например, при возникновении повреждения на линиях высокого напряжения, работающих в режиме минимальных нагрузок и больших переходных сопротивлениях повреждения, токи короткого замыкания могут быть меньшими максимальных токов нагрузки. Это приводит к невозможности использования обычных токовых защит и заставляет переходить к более сложным и дорогим видам защит.

Чувствительность защит оценивается коэффициентом чувствительности . Для защит, реагирующих на возрастающие величины при возникновении повреждения (для токовых – ток): k = I кзмин / I ср, где: I кзмин — величина тока при металлическом коротком замыкании в защищаемой зоне; I ср — уставка по току срабатывания токовой защиты.

3) Быстродействие – определяется следующими соображениями:

  • Ускорение отключения повреждения повышает устойчивость параллельной работы электрических машин в системе и, следовательно, устраняется одна из основных причин возникновения наиболее тяжелых системных аварий.
  • Ускорение отключения повреждения уменьшает время работы потребителей при пониженном напряжении, что позволит остаться в работе электродвигателям как у потребителей, так и на собственных нуждах электростанций.
  • Ускорение отключения повреждения уменьшает размер разрушений поврежденного элемента.

Поэтому для линий электропередачи 500 кВ быстродействие не должно быть хуже 20 мс, 750 кВ – 15 мс.

4) Надежность – способность устройства релейной защиты выполнять заданные функции защиты в течение заданного времени при заданных условиях эксплуатации.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Релейная защита. Виды и устройство. Работа и особенности

Согласно правилам эксплуатации электроустановок силовые устройства электрических сетей и электростанций должны быть обеспечены защитой от сбоев в эксплуатации и токов короткого замыкания. Средствами защиты являются специальные устройства, выполненные на основе реле, что оправдывает их название релейная защита и автоматика (РЗА). В настоящее время существует много различных устройств, способных в короткие сроки блокировать возникшую аварию в электрической сети, либо подать предупредительный сигнал о возникновении аварийного режима.

Виды релейной защиты

Релейная защита работает чаще всего совместно с автоматикой, и их устройство взаимосвязано со специфическими видами аварийных режимов сети:

  • Уменьшение частоты тока, возникающей при внезапной перегрузке генераторов вследствие короткого замыкания, либо отключения части других источников из сети.
  • Повышенное напряжение. Увеличение этого параметра на 10% уменьшает срок службы ламп освещения в два раза. Такой режим возникает при внезапной разгрузке сети.
  • Токовая перегрузка способствует излишнему нагреванию изоляции проводников и кабелей, создает искрообразование в контактных соединениях.
Реле классифицируются по определенным признакам:
  • Методу подключения: первичные, которые подключаются непосредственно в цепь устройства, и вторичные, которые подключаются посредством трансформатора.
  • Типу исполнения: электромеханические, состоящие из подвижных контактов, отключающих цепь, и электронные, обесточивающие цепь с использованием полупроводниковых элементов.
  • Назначению: измерительные, которые выполняют измерение параметров, и логические, которые подают сигналы и команды другим устройствам, выполняют задержку по времени.
  • Методу работы: прямого действия, которые связаны с устройством отключения механическим путем, и косвенного действия, которые управляют электрической цепью электромагнита, обесточивающего сеть питания.
Релейная защита и автоматика бывают различных видов:
  • Максимальная токовая защита, включается при достижении определенной величины тока, заданной при настройке.
  • Направленная наибольшая токовая защита, кроме настройки тока учитывает направление мощности.
  • Дифференциальная, применяется для защиты сборки генераторов, трансформаторов, шин путем сравнения величин токов на выходе и входе. При разнице, превышающей заданное значение, срабатывает релейная защита.
  • Газовая и струйная, применяется для обесточивания трансформатора и других устройств, работающих в емкостях с маслом. При возникновении неисправностей образуется повышенная температура, и из масла выделяются газы, снижается диэлектрическое свойство масла и разлагается его химический состав. На такие аварийные режимы срабатывают механические реле, которые действуют с учетом возникновения газа в емкости, а также веществ, образующихся при разложении масла. При срабатывании защиты подается команда на действие логической схемы.
  • Логическая, защищает шины, применяется для определения места короткого замыкания на питающих линиях, которые отходят от шин электростанции, и на шинах.
  • Дистанционная, имеющая блокировку по оптическому каналу, является более надежным способом защиты, в отличие от дистанционной защиты с ВЧ блокировкой, так как электрические помехи не оказывают большого влияния на оптический канал.

Дистанционная с ВЧ блокировкой, применяется для обесточивания воздушных линий при возникновении коротких замыканий.

Некоторые виды автоматики предназначены для подачи электроэнергии, в отличие от релейной защиты:
  • Автоматическая частотная разгрузка, выключает электрические устройства при снижении частоты тока в сети.
  • Автоматическое повторное включение, используется на линиях электропередач выше 1000 вольт, а также в сборках трансформаторов, электродвигателей и шин подстанций.
  • Автоматический ввод резерва, применяется при коммутации генератора в сеть в качестве резервного источника питания электроэнергией.
Устройство

Электромеханические конструкции релейной защиты постоянно модернизируются и совершенствуются. Внедряются инновационные технологические разработки и проекты. В новейших энергетических системах объединены статические, индукционные, электромагнитные устройства с микропроцессорными и полупроводниковыми элементами.

Однако основной смысл и порядок работы релейной защиты для всех новых устройств остается неизменным. Схема структуры релейной защиты показана на рисунке.

Releinaia zashchita strukturnaia skhema 1

1 — Электрический сигнал
2 — Блок наблюдения электрических процессов
3 — Блок логики и анализа
4 — Исполнительный блок
5 — Сигнальный блок

Блок наблюдения

Главной функцией этого блока является мониторинг электрических процессов, происходящих в электрической системе, путем измерений такими устройствами, как трансформаторы напряжения и тока.

Сигналы выхода на блоке могут передаваться непосредственно логическому блоку для сравнения параметров с настроенными пользователем значениями отклонений от нормальных значений, которые называются уставками. Также сигналы блока наблюдения могут сначала преобразовываться в цифровой вид, а затем передаваться дальше.

Блок логики

В этом блоке выполняется сравнение поступивших сигналов с предельными значениями уставок. Даже незначительное совпадение этих параметров между собой приводит к возникновению команды на срабатывание защиты.

Исполнительный блок

Этот блок все время находится в состоянии, готовом к срабатыванию, при поступлении команды от блока логики. При срабатывании осуществляются переключения цепи электроустановки по запланированному алгоритму, который составлен по принципу недопущения неисправностей электрооборудования и удара электрическим током работников.

Сигнальный блок

В электрической системе все процессы происходят очень быстро, поэтому человек не в состоянии воспринимать их. Чтобы сохранить происходящие в системе события, применяют специальные сигнальные устройства. Которые работают путем звукового и визуального оповещения, а также сохраняют все происходящие события в памяти устройства.

Все виды устройств после их срабатывания переводятся в исходное состояние оператором вручную. Это позволяет гарантированно сохранить информацию о действии автоматики и релейной защиты.

Принципы работы
Релейная защита может иметь нарушения в своей работоспособности, которые выражаются следующими факторами:
  • Ложные срабатывания при исправной электрической системе и отсутствии каких-либо повреждений.
  • Излишние сработки, когда не требуется работа исполнительного блока.
  • Повреждения внутри устройства защит.
Чтобы исключить отказы при функционировании релейной защиты, вырабатываются специальные требования к ней при проектировании, установке, настройки с запуском в работу, и техническом обслуживании:
  • Надежность функционирования.
  • Чувствительность к моменту запуска оборудования.
  • Быстродействие (время сработки).
  • Селективность.
Принцип надежности
Этот принцип определяется:
  • Безотказностью в эксплуатации.
  • Пригодностью к ремонту.
  • Долгим сроком службы.
  • Сохраняемостью.

Каждый из этих факторов имеет свою оценку.

Обслуживание и эксплуатация релейной защиты имеет три варианта надежности по срабатыванию при:
  1. Внутренних КЗ в рабочей зоне.
  2. Возникновении внешних КЗ за границей рабочей зоны.
  3. Работе без неисправностей.
Надежность устройств защиты бывает:
  • Эксплуатационная.
  • Аппаратная.
Принцип чувствительности

Этот принцип дает возможность определить виды предполагаемых расчетных повреждений и ненормальных режимов энергетической системы в рабочей зоне защиты.

Кч = Iкз min/Iсз

Чтобы определить его числовое значение, используется коэффициент Кч. Коэффициент рассчитывается отношением наименьшего тока короткого замыкания рабочей зоны к величине тока срабатывания. Релейная защита работает в нормальном режиме при:

Iсз < Iкз min

Наиболее приемлемая величина коэффициента чувствительности находится в диапазоне 1,5-2.

Принцип быстродействия
Время обесточивания поврежденного участка состоит из двух составляющих:
  1. Сработки защиты.
  2. Действия привода выключателя.

Первую составляющую можно отрегулировать, начиная от наименьшего значения, которое зависит от устройства защиты и числа применяемых элементов. Задержка по времени на сработку формируется, путем внедрения в схему специальных реле, имеющих возможность регулировки. Она применяется для наиболее удаленных защит.

Устройства, находящиеся рядом с местом неисправности, должны настраиваться на действие с наименьшими возможными диапазонами времени на срабатывание.

Принцип селективности

Этот принцип по-другому называется избирательностью. С помощью нее можно найти и локализовать место возникшего повреждения в структуре сети любой сложности.

Releinaia zashchita strukturnaia skhema 2

Например, генератор вырабатывает и подает электроэнергию различным потребителям, находящимся на участках 1, 2, 3, которые оснащены каждый своей защитой. При коротком замыкании внутри устройства потребителя на 3-м участке, ток будет протекать по всем устройствам защиты, начиная от источника питания.

Но в таком случае целесообразно будет отключить цепь участка, имеющего неисправность электродвигателя, при этом оставляя в работе остальные исправные потребители. Для этого существуют уставки релейной защиты, отдельно для каждой цепи, еще на стадии проектирования схемы защиты.

Устройства защиты 5, 3-го участка должны обнаружить ток неисправности раньше, и оперативнее сработать, отключив поврежденный участок от цепи генератора. Поэтому значения токовых и временных установок на каждом участке снижаются от генератора к потребителю, по принципу: чем дальше от неисправного места, тем ниже чувствительность.

В результате исполняется принцип резервирования. Который учитывает возможность поломки любых устройств, включая системы защиты более низкого уровня. Это означает, что при повреждении защиты 5 участка №3, при возникновении аварии должны сработать устройства защиты 3 или 4 участка 2. А эти участки в свою очередь подстрахованы устройствами защиты участка 1.

Особенности управления релейной защитой

Релейная защита как отдельный блок является самостоятельной схемой. Он входит в общие комплексы, которые составляют систему противоаварийного управления энергетической системы. В такой системе все элементы взаимосвязаны между собой и выполняют поставленные задачи в комплексе.

Коротко перечень защитных функций и работа автоматики изображены на схеме.

Releinaia zashchita strukturnaia skhema 3

Изучив особенности эксплуатации автоматики и релейной защиты, можно сказать, что необходимо постоянно совершенствовать знания и практические навыки, которые требуются при поступлении в работу нового оборудования для защиты.

Что такое релейная защита и для чего она нужна?

Первым делом расскажем о том, зачем нужно использовать РЗА. Дело в том, что существует такая опасность, как возникновение тока КЗ в цепи. В результате КЗ очень быстро разрушаются токопроводящие части, изоляторы и само оборудование, что влечет за собой не только возникновение аварии, но и несчастного случая на производстве.

Защитные устройства на подстанции

Помимо короткого замыкания может возникнуть перенапряжение, утечка тока, выделение газа при разложении масла внутри трансформатора и т.д. Для того чтобы своевременно обнаружить опасность и предотвратить ее, используются специальные реле, которые сигнализируют (если сбой в работе оборудования не представляет угрозы) либо мгновенно отключают питание на неисправном участке. В этом и заключается основное назначение релейной защиты и автоматики.

Основные требования к защитным устройствам

Итак, по отношению к РЗА предъявляются следующие требования:

    . При возникновении аварийной ситуации должен быть отключен только тот участок, на котором обнаружен ненормальный режим работы. Все остальное электрооборудование должно работать.
  1. Чувствительность. Релейная защита должна реагировать даже на самые минимальные значения аварийных параметров (заданы уставкой срабатывания).
  2. Быстродействие. Не менее важное требование к РЗА, т.к. чем быстрее реле сработает, тем меньше шанс повреждения электрооборудования, а также возникновения опасности.
  3. Надежность. Само собой аппараты должны выполнять свои защитные функции в заданных условиях эксплуатации.

Простыми словами назначение релейной защиты и требования, предъявляемые к ней, заключаются в том, что устройства должны контролировать работу электрооборудования, своевременно реагировать на изменения рабочего режима, мгновенно отключать поврежденный участок сети и сигнализировать персонал об аварии.

Классификация реле

При рассмотрении данной темы нельзя не остановиться на видах релейной защиты. Классификация реле представлена следующим образом:

  • Способ подключения: первичные (включаются в цепь оборудования напрямую) и вторичные (подключение осуществляется через трансформаторы).
  • Вариант исполнения: электромеханические (система подвижных контактов расцепляет схему) и электронные (отключение происходит с помощью электроники).
  • Назначение: измерительные (осуществляют замер напряжения, силы тока, температуры и других параметров) и логические (передают команды другим устройствам, осуществляют выдержку времени и т.д.).
  • Способ воздействия: релейная защита прямого воздействия (связана механически с отключающим аппаратом) и косвенного воздействия (осуществляют управление цепью электромагнита, который отключает питание).

Что касается самих видов РЗА, их множество. Сразу же рассмотрим, какие бывают разновидности реле и для чего они используются.

  1. Максимальная токовая защита (МТЗ), срабатывает если ток достигает заданной производителем уставки.
  2. Направленная максимальная токовая защита, помимо уставки осуществляется контроль направления мощности.
  3. Газовая защита (ГЗ), используется для того, чтобы отключать питание трансформатора в результате выделения газа.
  4. Дифференциальная, область применения – защита сборных шин, трансформаторов, а также генераторов за счет сравнения значений токов на входе и выходе. Если разница больше заданной уставки, релейная защита срабатывает.
  5. Дистанционная (ДЗ), отключает питание, если обнаружит уменьшение сопротивления в цепи, что происходит в том случае, если возникает ток КЗ.
  6. Дистанционная защита с высокочастотной блокировкой, используется для отключения ВЛ при обнаружении короткого замыкания.
  7. Дистанционная с блокировкой по оптическому каналу, более надежный вариант исполнения предыдущего вида защиты, т.к. влияние электрических помех на оптический канал не такое значительное .
  8. Логическая защита шин (ЛЗШ), также используется для выявления КЗ, только в этом случае на шинах и фидерах (питающих линиях, отходящих от шин подстанции).
  9. Дуговая. Назначение – защита комплектных распределительных устройств (КРУ) и комплектных трансформаторных подстанций (КТП) от возгорания. Принцип работы основан на срабатывании оптических датчиков в результате повышения освещенности, а также датчиков давления при повышении давления.
  10. Дифференциально-фазная (ДФЗ). Применяются для контроля фаз на двух концах питающей линии. Если ток превышает уставку, реле срабатывает.

Отдельно хотелось бы также рассмотреть виды электроавтоматики, назначение которой в отличие от релейной защиты наоборот включать питание обратно. Итак, в современных РЗА используют автоматику следующего вида:

  1. Автоматический ввод резерва (АВР). Такую автоматику часто используют при подключении генератора к сети, как резервного источника электроснабжения.
  2. Автоматическое повторное включение (АПВ). Область применения – ЛЭП напряжением 1 кВ и выше, а также сборные шины подстанций, электродвигатели и трансформаторы.
  3. Автоматическая частотная разгрузка, которая отключает сторонние приборы при понижении частоты в сети.

Помимо этого существуют следующие виды автоматики:

Разновидности автоматики

Вот мы и рассмотрели назначение и области применения релейной защиты. Последнее, о чем хотелось бы рассказать – из чего состоит РЗА.

Конструкция РЗА

Устройство релейной защиты представляет собой схему из следующих частей:

  1. Пусковые органы – реле напряжения, тока, мощности. Предназначены для контроля режима работы электрооборудования, а также обнаружения нарушений в цепи.
  2. Измерительные органы – могут также находиться в пусковых органах (реле тока, напряжения). Основное назначение – запуск других устройств, подача сигнала в результате обнаружения ненормального режима работы, а также мгновенное отключение приборов или с задержкой по времени.
  3. Логическая часть. Представлена таймерами, а также промежуточными и указательными реле.
  4. Исполнительная часть. Отвечает непосредственно за отключение или же включение коммутационных аппаратов.
  5. Передающая часть. Может быть использована в дифференциально-фазной защите.

Схема работы

Напоследок рекомендуем вам просмотреть полезное видео по теме:

Это и все, что мы хотели рассказать вам о назначении релейной защиты и требованиях, предъявляемых к ней. Надеемся, теперь вы знаете, что такое РЗА, какая у нее область применения и из чего она состоит.

Релейная защита: определение, функции и принципы работы

Релейная защита (РЗ) — это важнейший вид электрической автоматики, которая необходима для обеспечения бесперебойной работы энергосистемы, предотвращении повреждения силового оборудования, либо минимизации последствий при повреждениях. РЗ представляет собой комплекс автоматических устройств, которые при аварийной ситуации выявляют неисправный участок и отключают данный элемент от энергосистемы.

Во время работы РЗ постоянно контролирует защищаемые элементы, чтобы своевременно зафиксировать возникшее повреждение (или отклонение в работе энергосистемы) и должным образом отреагировать на случившееся.

При аварийных ситуациях релейная защита должна выявить и выделить неисправный участок, воздействуя на силовые коммутационные аппараты, предназначенные для размыкания токов повреждения (короткого замыкания, замыкания на землю и т.д.).

Релейная защита сопряжена с иными видами электрической автоматики, которые позволяют сохранять бесперебойную работы энергосистемы и электроснабжения потребителей.

На данный момент отрасль релейной защиты активно развивается и расширяется, уже сейчас используется микропроцессорная аппаратура и компьютерные программы не только для защиты, но и для комплексного управления оборудованием и системой в целом.

Функции релейной защиты

Главной задачей устройств РЗ является выявление ненормальных и аварийных режимов работы первичного (силового) оборудования, а именно фиксация следующих видов повреждений:

  • перегрузка электрооборудования;
  • двух и трех-фазных короткие замыкания;
  • замыкания на землю, включая двух и трех-фазные;
  • внутренние повреждения в обмотках двигателей, генераторов и трансформаторов;
  • защита от затянувшегося пуска;
  • асинхронный режим работы синхронных двигателей.

Принципы построения релейной защиты

Существует несколько видов реле, каждый из которых соответствует характеристикам электроэнергии (в данном случае – реле тока, напряжения, частоты, мощности и т.д.). Такая система отслеживает несколько показателей, выполняя непрерывное сравнение величин с ранее определенными диапазонами, которые называются уставки.

В том случае, когда контролируемая величина превышает установленную норму, соответствующее реле срабатывает: тем самым осуществляя коммутацию цепи путем переключения контактов. В первую очередь, такие действия касаются подключенной логической части цепи. В соответствии с выполняемыми задачами эта логика настраивается на определенный алгоритм действий, оказывающих влияние на коммутационную аппаратуру. Возникшая неисправность окончательно ликвидируется силовым выключателем, прерывающим питание аварийной схемы. В любой релейной защите и автоматике настройка измерительного органа выполняется с учетом определенной уставки, разграничивающей зону охвата и срабатывания защитных устройств. Сюда может входить только один участков или сразу несколько, состоящих из основного и резервных.

Реакция защиты может проявляться на все повреждения, которые могут возникнуть в защищаемой зоне или только на отдельно взятые отклонения от нормального режима работы.

В связи с этим, защищаемый участок оснащен не одной защитой, а сразу несколькими, дополняющими и резервирующими друг друга. Основные защиты должны воздействовать на все неисправности, возникающие в рабочей зоне или охватывать их значительную часть. Они обеспечивают полную защиту всего участка, находящегося под контролем и должны очень быстро срабатывать при возникновении неисправностей. Все остальные защиты, не подходящие под основные условия, считаются резервными, выполняющими ближнее и дальнее резервирование. В первом случае резервируются основные защиты, работающие в закрепленной зоне. Второй вариант дополняет первый и резервирует смежные рабочие зоны на случай отказа их собственных защит.

Принципы построения схемы защитных устройств

Несмотря на то, что в данный момент рынок предлагает большое количество разнообразных устройств РЗ, базовый алгоритм процессов остается прежним, только модернизируется для каждого конкретного случая. Основные функции защиты демонстрирует структурная схема.

Более подробно ознакомиться со структурной схемой защит и другими органами РЗ можно в нашей статье Основные органы релейной защиты.

Шкафы РЗА

Современные микропроцессорные устройства РЗА выполняют не только свою прямые задачи защиты, но и другие смежные функции. Таким образом, сегодня большое количество устройств можно укомплектовать в одном шкафу, что значительно упрощает монтаж оборудования, непосредственную эксплуатацию, а также значительно освобождает пространство.

Типовые шкафы защиты имеют еще ряд дополнительных преимуществ: так как шкафы выполняются по стандартным схемам, проверенным в эксплуатации, вероятность ошибок в работе значительно снижается, а удобство в наладке и монтаже возрастает. Узнайте еще больше о РЗА и типовых решениях на нашем сайте.

Релейная защита и автоматика

Релейная защита — комплекс автоматических устройств, предназначенных для быстрого (при повреждениях) выявления и отделения от электроэнергетической системы повреждённых элементов этой электроэнергетической системы в аварийных ситуациях с целью обеспечения нормальной работы всей системы. Действия средств релейной защиты организованы по принципу непрерывной оценки технического состояния отдельных контролируемых элементов электроэнергетических систем. Релейная защита (РЗ) осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить повреждённый участок и отключить его от ЭЭС, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания).

Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.

Содержание

Требования к релейной защите

Быстродействие

Быстродействие — это свойство релейной защиты, характеризующее скорость выявления и отделения от электроэнергетической системы повреждённых элементов. Показателем быстродействия является время срабатывания защиты — это интервал времени от момента возникновения повреждения до момента отделения от сети повреждённого элемента.

Селективность (избирательность)

Селективность — свойство релейной защиты, характеризующее способность выявлять поврежденный элемент электроэнергетической системы и отключать этот элемент только ближайшими к нему выключателями. Это позволяет локализовать повреждённый участок и не прерывать нормальную работу других участков сети.

Чувствительность

Чувствительность — это свойство, характеризующее способность релейной защиты выявлять повреждения в конце установленной для неё зоны действия в минимальном режиме работы энергосистемы. Другими словами — это способность чувствовать те виды повреждений и ненормальных режимов, на которые она рассчитана, в любых состояниях работы защищаемой электрической системы. Показателем чувствительности выступает коэффициент чувствительности, который для максимальных защит (реагирующих на возрастание контролируемой величины) определяется как отношение минимально возможного значения сигнала, соответствующего отслеживаемому повреждению, к установленному на защите параметру срабатывания (уставке).

Надёжность

Надежность — это свойство, характеризующее способность релейной защиты действовать правильно и безотказно во всех режимах контролируемого объекта при всех видах повреждений и ненормальных режимов для действия при которых данная защита предназначена, и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима, при которых действие данной защиты не предусмотрено. Иными словами, надежность — это свойство релейной защиты, характеризующее ее способность выполнять свои функции в условиях эксплуатации, ремонта, хранения и транспортировки. Основные показатели надёжности — время безотказной работы и интенсивность отказов (количество отказов за единицу времени).

Резервирование следующего участка

Резервирование следующего участка — важное требование. Если защита по принципу своего действия не работает за пределами основной зоны, ставят специальную резервную защиту.

Основные органы релейной защиты

Пусковые органы

Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.

Измерительные органы

Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.

Логическая часть

Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и аналоговых выходов микропроцессорных устройств защиты.

Пример логической части релейной защиты

Катушка реле тока K1 (контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора тока ТА. При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения установки реле K1, оно сработает и замкнёт рабочие контакты (11 и 12). Цепь между шинами +EC и -EC замкнётся, и запитает сигнальную лампу HLW.

Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.

Основные механизмы релейной защиты

Токовая защита

Токовая защита — это разновидность релейной защиты, которая реагирует на превышение тока на защищаемом участке сети по отношению к току срабатывания, или уставке. В зависимости от того, каким образом обеспечивается селективность действия с последующей (от источника питания) защитой, различают максимальную токовую защиту (МТЗ) и токовую отсечку (ТО). В радиальных (разомкнутых) сетях на ВЛ класса напряжения 6-10 кВ и выше наиболее распространённым вариантом организации защит от трёхфазных и междуфазных коротких замыканий является применение двухступенчатой защиты, включающей МТЗ и ТО. Для реализации МТЗ в ряде случаев применяются реле с зависимой от времени защитной характеристикой, а для ТО — всегда с независимой. При этом защита может выполняться на двух отдельных реле, или на одном реле, совмещающем обе ступени (например, РТ-80 и РТ-90), а также на базе цифровых многоступенчатых реле (SPAC и др.).

Максимальная токовая защита (МТЗ) — селективность действия обеспечивается за счёт задержки по времени срабатывания. Выбор тока срабатывания МТЗ осуществляется таким образом, чтобы его значение превышало максимальный рабочий ток в месте установки защиты на величину, которая зависит от коэффициентов надёжности и возврата реле, а также от коэффициента самозапуска (обычно не менее, чем в 1,2 — 2,0 раза). Это исключает возможность ложного действия защиты в нормальном режиме работы сети. При протекании тока КЗ срабатывание реле, как было отмечено ранее, происходит с определённой задержкой. Уставка по времени срабатывания предыдущей (от источника питания) защиты должна быть больше, чем уставка последующей, на величину так называемой ступени селективности Δt (порядка 0,2 — 1,0 с — в зависимости от типа реле, на базе которых выполнены защиты). Таким образом, в радиальных секционированных сетях при коротком замыкании в конце линии первой должна сработать ближайшая к месту возникновения КЗ защита, а в случае её отказа (через промежуток времени, равный ступени селективности) — предыдущая защита. Очевидно, что недостатком МТЗ является «накопление» задержек по времени, т.е. увеличение времени срабатывания защиты при переходе от конца линии к источнику. Следует учитывать, что токи короткого замыкания тем выше, чем ближе место возникновения КЗ к источнику питания. Таким образом, в радиальных секционированных сетях время отключения повреждённой линии посредством сигнала МТЗ при наиболее тяжёлых КЗ вблизи питающих шин может оказаться неприемлемым с точки зрения термической стойкости оборудования. Считается нормальным, если максимальная уставка по времени срабатывания не превышает 2,0 — 2,5 с. Коэффициент чувствительности МТЗ определяется как отношение тока междуфазного КЗ в конце защищаемой зоны к фактическому току срабатывания защиты, и в соответствии с требованиями ПУЭ (см. п.3.2.1. — 4.1.) должен составлять не менее 1,5 (для зоны дальнего резервирования в пределах действия последующей защиты — около 1,2).

Токовая отсечка (ТО) — селективность действия обеспечивается за счёт отстройки от максимального тока КЗ в конце защищаемой зоны. ТО представляет собой быстродействующую защиту, которая срабатывает без задержки по времени, и отключает наиболее тяжёлые короткие замыкания вблизи питающих шин. Величина тока срабатывания отсечки должна приблизительно в 1,1 — 1,2 раза превышать расчётный ток трёхфазного КЗ в конце зоны действия ТО (т.е. в месте установки последующей защиты); указанная кратность определяется коэффициентом надёжности применяемых реле. Коэффициент чувствительности ТО, исходя из п.3.2.26. ПУЭ, может быть рассчитан как отношение тока трёхфазного КЗ в месте установки защиты к фактическому току срабатывания отсечки, и должен составлять не менее 1,2. Иначе говоря, зона действия токовой отсечки должна покрывать около 20% от длины линии. Недостатком токовой отсечки является ограниченность зоны действия, поэтому она применяется только совместно с МТЗ в качестве второй ступени; при этом ТО обладает абсолютной селективностью, т.к. величина тока КЗ вне защищаемой зоны всегда меньше тока срабатывания отсечки.

Реле токовой защиты с высоковольтной изоляцией — специальные реле тока с высоковольтной изоляцией (от 5 до 100 кВ) между входом (катушкой управления) и выходом (герконом). В некоторых конструкциях катушка отсутствует и источником управляющего сигнала служит высоковольтная токоведущая шина. Эти реле тока, получившие название «геркотронов» или «высоковольтных изолирующих интерфейсов», предназначены для защиты от перегрузок по току мощных высоковольтных источников питания, рентгеновской аппаратуры, мощных лазеров, радаров, радиопередающих устройств, электрофизической аппаратуры. Они выполнены в виде компактных модулей, включаемых напрямую в разрыв токовой цепи, находящейся под высоким потенциалом, а их выходной контакт — напрямую в низковольтную цепь. Впервые эти устройства были разработаны и внедрены В. И. Гуревичем. Они защищены многочисленными авторскими свидетельствами на изобретения и патентами. Их описания можно найти в книгах В. И. Гуревича (см. ниже).

Особенности релейной защиты: ее устройство и виды, назначение защиты, сфера применения

Релейная

Планируя и вводя в эксплуатацию какую-либо электросистему на будущее следует учитывать возникновение различных аварий и сбоев в работе, приводящих к поломке приборов и т.д.

Своевременное устранение аварий и поломок происходит в результате моментального (не более 2-3 секунд) выключения сломанной части/компонента.

Понятно, что любой сотрудник не способен за такой короткий промежуток времени найти повреждение и починить устройство.

Таким образом, чтобы предотвратить подобные ситуации, электроустановки обеспечивают электроавтоматами, предназначенными для релейной защищенности установок.

На обычном языке – это электрические выключатели. По-другому их называют — релейная защита (трансформатор тока/система электроснабжения/электроавтоматика/РЗА).

Для чего она нужна?

Релейная

Очень часто во время эксплуатации электросистем возникает короткое замыкание. Однако, наравне с этим могут происходить разные скачки в напряжении, утечки тока и т.д.

И даже если такие ситуации не несут мгновенного разрушения устройств/объектов/помещений, то есть не угрожают по технике безопасности, тогда защитные приборы действуют не на выключение, а на предупреждение дежурного персонала о повреждениях.

Это и есть предназначение РЗ и электроавтоматики.

Основные требования к релейным устройствам

Релейная

Основные свойства релейной заключаются в следующем:

  1. Избирательность. Этот параметр характеризуется способностью системы отключать участки с повреждениями, в то время как не повреждённые элементы остаются включёнными. Выделяют два вида релейной: первый – это релейная со средней избирательностью (максимально токовая и дистанционная защита); второй – это защищенность с полной избирательностью (дифференциальная защита).
  2. Скорость отклика РЗ (быстрота срабатывания). Если скорость срабатывания системы будет высокой, то вероятность возникновения каких-либо повреждений или аварий будет ниже. Промежуток времени после появления аварии и до выключения устройства с повреждением из сети, называется временем отклика релейной защищенности. Это основной показатель этого параметра.
  3. Возможность релейной срабатывать даже на незначительные аварийные параметры, называется чувствительностью РЗ. Оценить данный параметр можно с помощью коэффициента чувствительности.
  4. Свойство, при котором устройство РЗ работает определённое время при указанных функциях, называется надёжностью. Выделяют два основных показателя этого параметра: число отклонений в единицу времени и период времени исправной работы.

То есть, предназначение РЗА с вышеперечисленными свойствами в том, что прибор должен подавать сигнал рабочему сигналу о повреждениях, моментально выключать из электросети сломанный элемент, быстро срабатывать при любых изменениях во время работы и в целом обеспечивать контроль работы электроприборов.

Классификация релейной защиты

Релейная

Система классификации реле достаточно разнообразна. Далее мы рассмотрим основные признаки, по которым делятся реле (электровыключатель):

  • По типу подключения: электровыключатели, подключаемые в сеть без каких-либо вспомогательных устройств, называются первичными; реле, подключаемые с помощью вспомогательных устройств (например, трансформатор напряжения), называются вторичными.
  • По типу работы: реле, в которых имеются подвижные компоненты, относят к электромеханическим/индукционным реле; электровыключатели без подвижных компонентов, называется статической (например, электронная, микропроцессорная и т.д.).
  • По типу назначения: электровыключатели, осуществляющие замеры по различным физическим величинам – это измерительное реле (например, сила тока, температура, мощность и т.д.); механизмы, передающие действие на другие устройства, называются логическими/вспомогательными реле. Последняя группа реле также способна выдерживать время и т.д.
  • По типу действия на управляемый компонент: электровыключатель, связанный автоматически с отключаемым прибором, относится к электровыключателям прямого влияния; реле, которые выполняют регулирование электроцепью электромагнитов, отключающие коммутационный прибор.

Если говорить о релейной защищенности, то здесь выделяют большое число типов РЗ, например:

  1. Защита электроприборов и электроцепей, которая срабатывает на превышение заданного значения электрического тока, называется релейной токовой защитой. К ней относят: максимальную релейную токовую защиту (МТЗ) – обеспечивает защиту приборов от тока, который превышает номинальное значение. Токовую отсечку (ТО) – быстрое устранение КЗ, которые появляются перед рабочей зоной. Направленную максимальную токовую защищенность (НМТЗ) – в этом случае к защите приборов релейной от токов добавляется управление направления мощностей.
  2. Если в трансформаторах повышается температура, которая сопровождается образованием газов и в результате этого происходит отключение питания приборов из сети. Такую защиту называют газовой.
  3. РЗ, основанная на сравнении тока перед защищаемым участком и тока в конце этого участка, называется дифференциальной защитой.
  4. Определение расстояния до точки возникновения КЗ с помощью сопротивления, такую релейную защиту называют дистанционной. Выделяют два подтипа дистанционной релейной защиты: 1) с использованием блокировки и высокой частоты; 2) с применением блокировки через оптический канал.
  5. Релейная защита, основанная на отклике оптического датчика в следствии сильного освещения и датчика в результате возникновения высокого давления, такая защита называется дуговой.
  6. Применяемая при определении КЗ в шинах защита, называется логической защитой шин (ЛЗШ). Она необходима для сокращения времени при отключении КЗ.
  7. РЗ, основанная при сопоставлении токовых фаз на концах электролинии, называется дифференциально-фазной защитой (ДФЗ). При превышении заданной величины происходит срабатывание реле.

Кроме основных типов релейной защиты далее мы расскажем про типы автоматики в РЗ, которые по сравнению с релейной защитой не выключают, а включают электропитание после аварии.

  1. Автоматика, которая применяется чтобы, включить линию целиком или отдельную фазу линии после её отключения за счёт применённой защиты, называется автоматическим повторным включением (АПВ). Выделяют два подтипа АПВ: механическое и электрическое. Применяют в линиях электропередач при напряжении более 1 кВ, а также при сборке шин подстанций, электродвигателей и трансформаторах.
  2. Автоматическое включение резерва (АВР), целью которого является бесперебойное снабжение приборов электричеством и позволяет моментально включать резервное оборудование.
  3. Если происходит снижение частоты в электросети и при этом происходит отключение сторонних электроприборов, то такой тип автоматики называется автоматической частотной разгрузкой.

Мы рассказали вам небольшую часть того, для каких целей и в каких областях применяется РЗ. Теперь осталось рассмотреть конструкцию РЗ.

Конструкция РЗ

Релейная защита в своём строении имеет такие элементы как:

  1. Для контроля процессов в электроприборах и выявления аварий в электроцепи применяют специальные пусковые элементы – это: реле, реагирующее на изменение мощностей; реле, реагирующее на изменение силы тока и реле, реагирующее на изменение в напряжении.
  2. Запустить другие приборы, подать сигнал в следствие выявления неполадок и быстро сработать на выключение устройств – всё это позволяют сделать измерительные элементы. Они также способны располагаться в элементах пуска.
  3. Область, в строении которой находятся таймеры, промежуточные и указательные реле, называется логической.
  4. Область, отвечающая за включение и выключение оборудования, называется исполнительной.
  5. В определенных типах РЗ присутствуют передающие элементы. Их можно встретить при дифференциально-фазной.

В этой статье мы постарались подробно рассмотреть для чего нужна РЗ, какие требования к ней предъявляют и где она применяется.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: