Как регулировать мощность ТЭНа?

Регулятор мощности для ТЭН не создающий помех

В интернете есть множество примитивных схем симисторных регуляторов мощности. Собранные по этим схемам регуляторы заполонили рынок, включая всем известный Aliexpress. Схемы очень простые и имеют минимум компонентов, не требуют настройки, поэтому заслужили огромную популярность среди потребителей. Но, они все имеют один недостаток, а именно большие помехи, которые излучает регулятор мощности при изменении угла фазы открытия симистора. Помимо помех нагруженное устройство, особенно электродвигатели, нагреваются и создают значительное гудение.

Регулятор мощности для ТЭН не создающий помех

Представленный в этой статье регулятор мощности для ТЭН не создает помех и может регулировать мощность до 3кВт. Незначительное изменение номиналов (читать ниже) даст возможность регулировать обороты синхронного или асинхронного двигателей без значительного их нагрева, как например, при использовании примитивного симисторного регулятора.

Схема регулятора мощности для ТЭН не создающего помех

Схема регулятора мощности для ТЭН не создающего помехи

Принцип регулирования основан на интервальном открытии и закрытии симистора в момент прохождения синусоиды через ноль. Грубо говоря, одну секунду симистор открывается, а потом секунду он закрыт. Эти интервалы вырабатывает генератор, и они настраиваются переменным резистором.

Теперь подробнее. Диодный мост VD1-VD4 выпрямляет напряжение переменного тока

220В. Далее с помощью балластного конденсатора C1 и стабилитрона VD5 напряжение понижается и стабилизируется на уровне +12В. Пульсации сглаживаются емкостью C2. Напряжение +12В будет питать схему управления симистором VS1.

Регулятор мощности для ТЭН без помех

Схема управления симистором состоит из двух основных узлов. Первый — это генератор импульсов, построенный на таймере DA1, а второй узел — это гальваническая развязка на оптопаре U1.

Генератор имеет практически постоянную частоту (около 1Гц) с изменяемой шириной импульса.

При спаде импульса на выходе таймера DA1 (вывод 3), его 7 вывод внутренне (через встроенный транзистор) соединяется с общим проводом (GND) и через светодиод U1, резистор R4 и светодиод HL1 протекает ток около 10мА. Внутренний светодиод U1 засвечивается и оптосимистор U1 открывается, подавая управляющий ток в вывод G симистора VS1. Открытие оптосимистора происходит только при прохождении синуса через ноль, так как MOC3063 имеет такую схему контроля. Это и исключает помехи данного регулятора. Открывшийся симистор VS1 пропускает через себя ток нагрузки ТЭН.

Далее по фронту импульса на 3 выводе таймера DA1 вывод 7 отключается от общего провода и оптопара U1 закрывается, вслед за ней закрывается симистор, отключая ТЭН. И далее все по циклу повторяется, пока таймер генерирует импульсы.

Ширина импульса зависит от скорости заряда и разряда конденсатора C3. Чем дольше происходит заряд и быстрее происходит разряд, тем уже импульс и наоборот. Регулируется это переменным резистором R2. Заряд емкости C3 выполняется с выхода таймера (вывод 3) через цепь R3VD6R2, а разряд происходит через R2 и VD7.

На графике выходное напряжение регулятора мощности будет выглядеть пачками целых, необрезанных периодов (полупериодов).

Принцип работы регулятора мощности на таймере NE555

Параллельно силовым терминалам симистора VS1 подключена помехоподавляющая цепь R7С5, ее можно и не устанавливать.

По интервалам засвечивания HL1 можно судить об уровне ограничения мощности ТЭН.

Симисторный регулятор без помех

Компоненты

Резисторы R1 и R7 мощностью 1Вт. Остальные 0.25Вт.

Емкости C1 и С5 пленочные на 400В. Конденсатор C4 керамический на 63В.

Для увеличения частоты генератора (для работы с электродвигателями) можно уменьшить емкость конденсатора C1, например до 1мкФ.

MOC3063 меняется на MOC3043 или MOC3083. Можно пробовать установить MOC3061 или MOC3062 но для их открытия нужен больший ток, а значит нужно уменьшать номинал R4, что может повлечь за собой необходимость увеличения емкости балластного конденсатора C1.

Стабилитрон с малым минимальным током открытия BZX55C10, BZX55C11 или BZX55C12. Подойдет и отечественный стабилитрон Д814В(Г,Д). Не подойдут стабилитроны 1n474*, либо опять же придется увеличивать емкость балластного конденсатора C1.

Регулятор мощности на симисторе без помех

Симистор VS1 выбирается исходя из тока нагрузки, и берется минимальный запас по току не менее 30%. Для регулятора мощности ТЭН 3кВт я применил симистор BTA20-600B (рассчитанный на 20А). Рекомендую применять серию BTA с изолированным корпусом. Корпус симистора этой серии имеет металлический фланец, но он не соединен с его выводами. Подойдут, например BTA12-600B или BTA16-600B. Работать будет и серия BT, например, по этой схеме на симисторе BT137-600D я собирал регулятор температуры паяльника.

Для более надежной работы рекомендуется использовать светодиод красного цвета в качестве компонента HL1. У красного цвета наименьшее падение напряжения, это важно для этой схемы.

Охлаждение

Площадь теплоотвода будет зависеть от мощности ТЭН. Для 1кВт минимальная площадь приблизительно составит 150см 2 , для 2кВт – 300см 2 , для 3кВт – 450см 2 .

Не забываем про термопасту между симистором и радиатором. Также не забываем установить изоляционную прокладку и втулку, если корпус симистора неизолированный.

При использовании регулятора с ТЭН мощнее 1.5кВт я рекомендую пропаять медную жилу вдоль силовых дорожек печатной платы и демонтировать с нее винтовые клеммы, заменив их пайкой. Это исключит слабые места регулятора.

Печатная плата регулятора мощности не создающего помехи

При эксплуатации на большой мощности (более 1.5кВт) установите автоматический выключатель, так как стеклянные предохранители очень сильно раскаляются, особенно в местах соприкосновения с держателем.

Испытание

При испытаниях регулятора мощности действительно симистор открывался при прохождении синуса через ноль, что очень порадовало отсутствием мерцания рядом включенного светильника, как при использовании примитивных схем. Для убеждения я через понижающий трансформатор взглянул осциллографом на форму выходного напряжения, синусоида была с целыми периодами без отсечения.

Первое включение было с подключенной на выход лампой накаливания, при этом радиатор можно не ставить, если лампа слабее 80Вт.

Регулируем мощность без помех

Регулятор на симисторе

Далее регулятор был нагружен ТЭН мощностью 1.3кВт, полет нормальный.

Регулятор ТЭН

Диммер для ТЭН

Печатная плата регулятора ТЭН не создающего помех СКАЧАТЬ

Регулятор напряжения для тена от 1 до 6 кВт

регулятор напряжения своими руками

Регулятор напряжения в электрических цепях, служит для изменения мощности, подаваемой в нагрузку. С помощью регулятора напряжения можно управлять скоростью вращения электродвигателей, уровнем освещенности и нагревательными приборами такие как паяльник, электрическая плитка, тэн. В радиомагазинах можно купить готовое изделие но сделать регулятор напряжения своими руками не сложно.

В процессе самогоноварения выяснилось что на газу процес нагревания браги происходит достаточно долго (около 2-х часов) и к тому же, неудобно регулировать процесс дистилляции браги, газовой плиткой. В следствии чего возникла острая необходимость в модернизации самогонного(дистиллятного) аппарата, врезкой в него электрического нагревателя. Изначально задумывалось, что тен будет ставится мощностью 3 kW но в дальнейшем передумали и уменьшили до 2500 ватт. Далее нам понадобилась регулировка напряжения для управления процессом дисциляции, её мы решили изготовить своими руками, благо схем в общем доступе полно, они простые, минимум деталей и изготовление много времени не занимает.

Схема регулятора напряжения на 220 вольт

  • Рисунок 1. Схема.

Схема состоит из симистора, BTA41-800B по названию можно определить его параметры ток и напряжение. Например BTA это обозначение симистора, 41 это его ток в амперах и 800B это его напряжение. Симистор можна заменить на более слабый ток для этого нужно мощность вашего тена разделить на напряжение, например: 2 кВт разделить на напряжение в сети 220 вольт мы получим нужный нам ток 2000/220=9,1 Ампер. В этом случае мы можем использовать другой симистор BTA12-600B, но так как симистор будет работать практически на пределах своих возможностей, он будет греться и придется закрепить его на радиатор, в противном случае он может выйти из строя.

  • Рисунок 2. Схема с вольтметром.

Примечание.В схеме можно применять любой симистор не менее 600B и током в зависимости применяемого нагревательного элемента. В любом случае для облегчения работы симистора его следует разместить на радиаторе охлаждения. Дополнительно можно поставить вольтметр на выход схемы, чтобы видеть изменение напряжения наглядно и на вход поставить автомат на 16-25 ампер.

Детали для схемы:

1.Симистор выбираем от нагрузки но можете как в моем случае чем больше тем лучше BTA8-600b, BTA12-600b, BTA16-600b, BTA20-600b, BTA24-600b, BTA25-600b, BTA26-600b, BTA40-600b, BTA41-600b.

2.Потенциометр можно ставить в пределах от 470 кОм до 1 мегаом (МОм). Советую ставить потенциометр на 1 МОм так как у него больше диапазон регулировки, можно регулировать фактически до нуля. В начале я собрал схему с потенциометром на 500 кОм и в дальнейшем перепаивал на 1 мОм.

3.Динистор DB3 у него нет полярности припаиваем как хотим.

4.Резистор 10 кОм.

5.Конденсатор керамический 0,1 мкФ.

Изготовление схемы

  • Рисунок 3. Схема в моем исполнение.

Для изготовления схемы нам понадобится в первую очередь паяльник, припой и канифоль и радио детали которые без труда можно приобрести в любом радио-магазине. Пожалуйста, уделяйте пристальное внимание, есть риск поражения электрическим током (как и во всем электрическом).

И так, для начала берем печатную плату и на ней располагаем компактно все детали после чего спаиваем все по схеме. Останется прикрепить симистор на радиатор. Я взял радиатор из старого блока питания телевизора. И останется самое сложное найти корпус и разместить схему в нем. На собирание схемы по времени у меня ушло буквально 15 минут.

  • Рисунок 4. Схема регулятора мощности в моем исполнение.
Читайте также  Почему выбивает УЗО при подключении стабилизатора напряжения?

Примечание. Эта схема часто встречается в пылесосах, китайских точильных станках.

  • Рисунок 5. Регулировка с пылесоса.

Как происходит процесс регулировки напряжения в дистилляторном аппарате.

На начальном этапе нагреватель включаем на полную мощность. После достижения температуры (78,8) градусов, что соответствует точки кипения этилового спирта, мощность нагревателя уменьшаем. Опытным путем меняя положения регулятора, нужно добиться того, чтобы весь выделяющийся пар конденсировался системой охлаждения. Это поможет избежать лишних потерь спирта и в то же время при правильно подобранной мощности позволит сократить время производства до возможного минимума.

Регулировка мощности ТЭНа

Всем доброго времени суток! Ситуация следующая: занимаюсь винокурением и для дистилляции использую перегонный куб со встроенным ТЭНом на 3 кВт 220В (сдвоенный по 1,5 кВт). Недавно приобрел к нему систему нагрева на базе регулятора мощности РМ-2, чтобы собственно и регулировать мощность ТЭНа меняя выходное напряжение. Имеется возможность включать/отключать каждый ТЭН по отдельности. Например, для быстрого разогрева браги, я включаю оба ТЭНа, т.н. разгонный режим (суммарная мощность 3 кВт), а после ее закипания мне нужно снизить мощность до 1,2 кВт, для чего я отключаю один из ТЭНов и оставляю второй на 1,5 кВт. Вопрос такой: сколько нужно выставить на РМ-2 вольт, чтобы мощность ТЭНа снизилась до 1,2 кВт? Где-то видел такую формулу: U=220⋅√1200/1500≈197B. Это правильно или нужно считать по-другому? Заранее спасибо за ответы!

  • Просмотр профиля
  • Личное сообщение

navigator31rus написал:
видел такую формулу: U=220⋅√1200/1500≈197B. Это правильно

верно
расчет ведется через сопротивление обмотки ТЭНа, что, в итоге, приводит к сравнению мощностей

Не люблю людей безответственных и без Ч/Ю. Ответственным и с Ч/Ю — welcome.

  • Просмотр профиля
  • Личное сообщение
  • Просмотр профиля
  • Личное сообщение

navigator31rus ,
а можно просто поставить в щиток (если он в квартире) какой-нибудь приборчик , который будет вам сразу и напряжение показывать, и ток, и мощность, их сейчас много на рынке

Не люблю людей безответственных и без Ч/Ю. Ответственным и с Ч/Ю — welcome.

  • Просмотр профиля
  • Личное сообщение

navigator31rus , это регулятор не управляет выходным напряжением, а лишь калечить исходную синусоиду, отрезая от неё фронты. Потому указанное на приборе напряжение в лучшем случае будет соответствовать действующему значению этого порезанного напряжения. Можно сказать, что на дисплее указывается напряжение синусовой формы, тепловое действие которого равно тому, что в данный момент находится на выходе регулятора. Для Вас всё это будет не важно до тех пор, пока не попытаетесь измерить реальное выходное напряжение недорогим вольтметром.
Если Вас достанут помехи, которые производят регуляторы этого типа, ищите регуляторы счётного типа, которые коммутируют ток при переходе напряжения через ноль синусоиды.

  • Просмотр профиля
  • Личное сообщение

navigator31rus , а температура тут не важна. можно же обычным терморегулятором управлять!

  • Просмотр профиля
  • Личное сообщение

alex50 , При чем здесь, терморегулятор? Мне же не заданную температуру надо поддерживать, она при дистилляции/ректификации постоянно растет по мере уменьшения содержания спирта в браге. Напротив, мне нужен стабильный нагрев при неизменной мощности ТЭНа. Т.е. чтобы я установил на РМ-2 мощность, например 1200 Ватт и ТЭН на этой мощности стабильно и без скачков грел жидкость в кубе. А терморегулятор используется для брожения сусла, где как раз и нужно соблюдать строго заданный температурный режим.

  • Просмотр профиля
  • Личное сообщение

cineman написал:
navigator31rus , это регулятор не управляет выходным напряжением, а лишь калечить исходную синусоиду, отрезая от неё фронты. Потому указанное на приборе напряжение в лучшем случае будет соответствовать действующему значению этого порезанного напряжения. Можно сказать, что на дисплее указывается напряжение синусовой формы, тепловое действие которого равно тому, что в данный момент находится на выходе регулятора. Для Вас всё это будет не важно до тех пор, пока не попытаетесь измерить реальное выходное напряжение недорогим вольтметром.
Если Вас достанут помехи, которые производят регуляторы этого типа, ищите регуляторы счётного типа, которые коммутируют ток при переходе напряжения через ноль синусоиды.

cineman ,
Т.е. данные, получаемые при расчетах по вышеуказанной формуле будут не корректными? Я правильно понял?

  • Просмотр профиля
  • Личное сообщение

navigator31rus написал:
Т.е. данные, получаемые при расчетах по вышеуказанной формуле будут не корректными? Я правильно понял?

нет, не правильно. Формула верна.
Ваш регулятор показывает выдаваемое среднеквадратичное напряжение, которое и используется в расчетах мощности.

  • Просмотр профиля
  • Личное сообщение

Нет. Я написал на тот случай, если додумаетесь использовать последовательное включение ТЭНов в качестве пониженного режима и начнёте измерять падение напряжения на них.

  • Просмотр профиля
  • Личное сообщение

баксов 10 стоит — покажет все изменения мощности, и даже сколько это стоит.

Регулятор мощности до трёх киловатт

Такое очень простое, и в то же время очень полезное устройство, можно применить для управления оборотами электродвигателей с фазным ротором. Например, электродрель старого производства, у которой нет встроенного регулятора оборотов, и ещё большого количества подобных инструментов и механизмов, которым не помешает регулировка оборотов, для расширения возможностей данного устройства.
Так же, такой регулятор отлично и бесступенчато регулирует мощность электрических нагревателей любого типа. Например, конфорки электроплиты, калориферы и тому подобное.

Регулятор может плавно менять освещённость ламп накаливания и диммируемых светодиодных в широких пределах от ноля до 100%.
Для начала монтажа устройства соберём детали.

Нам понадобится:
R1 – 20 Килоом, R3 — 3.3 Килоом, R4 – 300 Ом,
R2 – потенциометр — от 470 Килоом до 1 Мегаом,
C1 и C2 -0.05 МкФ, C3 – 0.1 МкФ,
T1 -динистор или ещё его называют диак DB3,
T2 – симистор или по другому — триак.
Симистор можно взять Советского производства из серии КУ208.
Или BT138-800, BT139-600 или им подобные, эти симисторы в Китае около 10 рублей за штуку, так же как и макетные платы, на которой мы и будем собирать данное устройство.

Макетная плата здорово облегчает и убыстряет монтаж электронных приспособлений. Не нужно заморачиваться с изготовлением и сверлением печатных плат. Просто вставляешь радиодетали в готовые отверстия, припаиваешь, соединяешь по схеме перемычками и готово.

Все конденсаторы и динистор можно выпаять из старых энергосберегающих ламп. Конденсаторы с нужными номиналами и динисторы есть не во всех лампах, так что нужно поискать. Динисторы в разных корпусах внизу второй фотографии (чтобы вы имели представление об их внешнем виде), а на корпусах у них написано DB3 (с лупой можно прочитать).

Потенциометр я взял от старого, ещё Советского телевизора, но подойдёт и любой другой с указанными номиналами.

Радиатор от компьютерного блока, но его нужно подбирать, в зависимости от планируемой нагрузки, которой вы собираетесь управлять. До 300 ватт – радиатор совсем не нужен, а чем выше нагрузка, тем массивнее радиатор. Размеры радиатора зависят и от характера нагрузки, так что подбор дело индивидуальное, но чем больше радиатор, тем лучше режим работы симистора и он будет работать дольше без аварий. Так что не скупитесь и поставьте побольше.

Резисторы везде есть, в любой аппаратуре, так что подобрать не составит большой проблемы. В Китае, тоже можно купить. 600 резисторов разных номиналов «набор», стоит около 150 рублей, вместе с доставкой, так что проще купить, чем заморачиваться с поиском и выпаиванием из блоков.

Клеммы для подключения питания и нагрузки можно взять любые, какие найдёте, но можно и вовсе обойтись без них, вопрос в удобстве использования данного устройства в эксплуатации.

Схема устройства выглядит так.

Цепочка R4 – C3 является защитой от радиопомех и её можете убрать, но соседи за это могут побить, если поймают.

Теперь приступаем к сборке.

Детали размещаем на макетной плате, так быстрее, на мой взгляд, удобнее и выглядит хорошо. Пайку выполнять нужно как можно более качественно и желательно не спеша.

Олово из Китая качественное не встречал, так что воспользуйтесь любым другим.

Перемычки (на схеме обозначенные красным цветом) выполняем медным проводом повышенного сечения, в зависимости от мощности нагрузки. На 3 киловатта — 2,5 квадратных миллиметра будет, с запасом, в самый раз. Я планирую управлять оборотами дрели на 800 ватт, и провод взял 1,5 мм, конечно тоже с запасом, но как говорится запас…. . И лучше будет работать.

Подключаем лампочку в качестве наглядной нагрузки и кусок провода с вилкой для подключения к сети.

Читайте также  Как сделать дверь из досок своими руками

Когда устройство подключаете к питанию, действуйте предельно осторожно! Все элементы схемы находятся под полным напряжением сети 220 вольт! Опасно для жизни!

Смотрите видео и убеждайтесь, что всё работает, как и планировалось.

Arduino.ru

Честно говорю с ардуино не работал, но выбрал его как самое дешевый микроконтроллер. Есть необходимость сделать управление 4квт ТЭНом в зависимости от показаний датчика температуры.

Датчик температуры хочу заказать такой, ардуино заказал китайский

Что мне ще нужно и кто может помочь с схемой?

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Управлять мощностью ТЭНа сами понимаете буду регулируя напряжение.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

справа. вверху. кнопка. поиск.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

ЕвгенийП аватар

Управлять мощностью ТЭНа сами понимаете буду регулируя напряжение.

Если честно, не понимаю. Есть много способов управлять мощностью ТЭНа и регулировка напряжения далеко не самый простой, да и не самый эффективный из них.

Ответить на Ваш вопрос невозможно без понимаю целей управления и требований к точности управления. Например, есть простые вопросы от которых завивист «что Вам ещё нужно»

Q1. Насколько точно нужно поддерживать заданную темепратуру?
Q2. Регулируем только температуру или ещё и скорость нагревания?
Q3. Цель — только температура или некий термопрофиль?

А так, погуглите, есть миллион готовых проектов по управлению мощностью ТЭНа. Вот, например, человек управляет 4-мя ТЭНами электродуховки — http://olegart.ru/wordpress/reflow-soldering/

Кстати, о Вашем датчике — Вы воду греть собрались? Если да, то отличный датчик, если чего другое — смотрите на его максимальную температуру.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Ок почитаю, для меня ключевой вопрос можно ли регулировать напряжение не механическим способом. Сейчас я кручу крутилку на реостате, в зависимости от показаний термометра. Хотелось бы автоматизировать процесс, чтобы ардуино брал показание термодатчика и регулировал напряжение. Температура у меня до 100 град.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Если вам надо для приобретения навыков программирования
то с чем вам ещё сразу придётся столкнуться —
это кнопки, индикатор, простейшее меню, блок питания и корпус.

А если надо для реальной работы вашего ТЭНа- купите готовый ПИД контроллер.
Или простой On-Off.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Подскажите как лучше регулировать открытие закрытие симистора на переменном токе, на аналоговом PWR выходе не вижу способа работать из за частоты тока в розетке. Думаю на DigitalPin сделать на более длинных промежутках, например открыто 600мс, закрыто 400мс, получится 60% мощности.

Но хочу приделать еще PID библиотеку http://playground.arduino.cc/Code/PIDLibrary , поставить ей предел от SetOutpuLimits(0, 1000), т.е. тоже на секунду, но боюсь он будет менять и не попадать в полуволну. Как бы лучше сделать?

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Судя по вопросам вы совсем не в теме. Наберите в правом верхнем углу в строке поиск слово ТЭН. Прочитайте хотя бы первых десять выпавших тем. Посмотрите на схемы, скетчи и если останутся вопросы — добро пожаловать. На форуме за несколько лет всё рассмотрено со всех сторон. Есть ответы на все ваши вопросы. Просто надо приложить немного усилий что бы найти.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Честно говорю с ардуино не работал, но выбрал его как самое дешевый микроконтроллер. Есть необходимость сделать управление 4квт ТЭНом в зависимости от показаний датчика температуры.

Датчик температуры хочу заказать такой, ардуино заказал китайский

Что мне ще нужно и кто может помочь с схемой?

зачем вам ардуино? Исходя из постановки задачи вам нужно купить готовый контроллер температуры. Они стоят от ста рублей без корпуса или чуть дороже с корпусом. Могу ссылок подбросить

у них релейное управление, обычно стоит реле на 10а, что для 4квт мало, но это легко решается внешним контактором на 25-40а или китайским твердотельным реле на 40-60а

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Управлять мощностью ТЭНа сами понимаете буду регулируя напряжение.

судя по всему ТС нужно управлять температурой, это решается обычным релейным регулированием

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

ЕвгенийП аватар

Исходя из постановки задачи вам нужно купить готовый контроллер температуры. Они стоят от ста рублей без корпуса или чуть дороже с корпусом. Могу ссылок подбросить

А мне не подбросите? Постараюсь кратко объяснить что ищу: не плотно (прямо типа всё бросить и кинуться делать), но стал задумаваться о паяльной печи. Цены на готовые сильно не радуют (если знаете за разумную цену, тоже буду благодарен). А уж если делать, то хочется выпендриться и сделать чтобы она по термопрофилю как по линии шла (нагрев с определённой скоростью, постоять на месте, ещё нагрев со скоростью и т.п.) Сделать своё управление тэнами на симисторе я сумею, но смотрю и на готовые управлялки. Вот, например, но это же фуфло для лохов — она не умееет включать нагрузку «вполнакала» а без этого все разговоры про ПИД — сотрясание воздуха модным словом и не более того.

Не знаете ли Вы какого-нибудь настоящего ПИД регулятора с цифровым управлением через какой-нибудь «avr-доступный» протокол?

Как регулировать мощность переменного тока

Решил как-то отец собрать для дачи некое устройство, в котором, по его заверению, можно будет варить сыр. Устройство сие вид имело могучий и представляло из себя железный короб, подозрительно напоминающий старую стиральную машинку. Внутрь короба (все также добротно!) были вмонтированы три тэна по 1700 Ватт каждый. В общем сыра должно было хватить на небольшой посёлок.

Изделие (внешне выглядящее как что-то из безумного макса), должно быть весьма технологичным и поддерживать заданную температуру в максимально узких пределах. Для этого рядом появилась ещё одна коробка с симисторами, к которым подключались ТЭНы и схема, выдающая высокий уровень при переходе синусоиды через ноль. А у меня появился интересный проект.

Итак нам нужно выходить на заданную температуру и поддерживать её, с этим должен справляться алгоритм ПИД регулятора. Глубоко вдаваться в его работу не буду, скажу лишь что он получает на вход текущую ошибку, а на выходе выдает какое-то число в заданных пределах. У меня таким числом будет мощность выдаваемая на ТЭН, хотя в принципе, это может быть любой инерционный процесс, например обороты двигателя. Что важно для ПИД регулятора, это чтобы выходная величина производила воздействие линейно. Поэтому попробуем разобраться в способах регулировки мощности и их линейности.

Как вообще регулируется мощность?

Мощность — это произведение силы тока на напряжение. Если представить это произведение графически, то для постоянного тока, это будет площадь прямоугольника со сторонами равными напряжению и току

Так как при постоянном сопротивлении и напряжении ток тоже будет постоянным, то заменим ось тока на ось времени. Сопротивление я беру постоянным для объяснения принципа регулирования.

Тогда при заданном напряжении (12 В) и сопротивлении в 12 Ом, по закону Ома: I=U/R, получаем ток равный 1 А, и соответственно мощность за единицу времени будет равна 12 Вт. При другом сопротивлении мощность, естественно тоже изменится.

Теперь, если мы хотим регулировать мощность за единицу времени, нам нужно как-то изменять площадь фигуры за единицу времени. Самым чистым способом будет просто изменять напряжение, тогда и мощность будет пропорционально изменяться. Но контроллер, как и любые цифровые устройства, не умеет плавно изменять напряжение на ножках, он может либо «поднимать» их до высокого уровня, либо «опускать» до низкого уровня. Этот недостаток он компенсирует скоростью, даже самый дохленький современный МК может работать на частотах в миллионы тактов в секунду. Чтобы регулировать мощность, контроллер будет очень быстро «дрыгать» ножкой, тем самым изменяя результирующая площадь импульса за единицу времени.

На этом принципе устроена широтно-импульсная модуляция, она же ШИМ. Изменяя время (ширину) импульса за период мы изменяем выдаваемую мощность. На рисунке выше, показано два периода ШИМа. Каждый период имеет отношение площади импульса к площади всего периода 0.5, те половину времени периода контроллер выдает высокий уровень сигнала, другую половину низкий. Отношение времени высокого уровня сигнала к времени низкого называется скважностью. Красная линия на графике отражает результирующую мощность за единицу времени, по ней видно что при скважности 0.5 мощность также упала на половину (с 12 до 6 Вт). Хорошая новость состоит в том, что, ШИМ в контроллерах реализован аппаратно. Так что для регулирования чего-то достаточно его запустить и, по необходимости, изменять скважность.

Читайте также  Как вставить сверло в перфоратор

Для постоянного тока, режим ШИМа оптимален, причем чем более инерционный прибор мы к нему подключаем, тем меньшую частоту ШИМа можно использовать. Для большого ТЭНа достаточно чуть ли не одного герца, а вот для светодиодов лучше использовать частоту побольше. Кстати частота ШИМа в подсветке экрана ноутбука, зачастую оказывается чуть ли не решающим фактором при покупке, так как, при слишком низкой частоте, глаза будут быстро уставать.

Если попробовать провернуть трюк с ШИМом для переменного напряжения, мы увидим что все сломалось и мощность перестала регулироваться линейно

одинаковые промежутки времени стали давать нам разную площадь, а значит разную мощность. Однако, если разбить полученные отрезки на на ещё более мелкие, то процентное соотношение ширины импульса к ширине кусочка будет выравниваться.

Если мы возьмем равный процент выдаваемой мощности от каждого кусочка, в результате мы получим такой же процент, от мощности всей волны, а на выходе мы получим линейный регулятор мощности для переменного тока. Причем чем большую частоту будет иметь ШИМа, тем на большее количество кусочков он разобьет синусоиду, а значит мы получим большую линейность.

Это было бы решением всех проблем, но в моем случае устройством коммутировавшим нагрузку был не быстрый транзистор, а симистор — медленный прибор, с максимальными рабочими частотами в пределах нескольких сотен герц, к тому же симистор можно только открыть, закроется он сам при переходе через ноль. На таких частотах управлять переменным напряжением которое имеет частоту 50 Гц, линейно не получится. Поэтому здесь нужно использовать какой-то другой подход и как раз для него, помимо симисторов, была установлена схема перехода через ноль.

В случае с симисторами лучше разбить синусоиду на куски с одинаковыми площадями и записать время каждого такого кусочка в таблицу. Тогда каждое последующее значение из таблицы будет линейно увеличивать мощность.

На графике выше полуволна синусоиды разбита на части разные по времени, но имеющие одинаковую площадь, а значит несущие в себе одинаковую мощность. Все что нам останется сделать это загрузить таблицу с временными интервалам в наш котроллер, синхронизировать какой-то из его таймеров с частотой синусоиды, для этого используется схема перехода через ноль, и просто брать из таблички нужное значение, в течении которого будет высокий уровень. Суть метода похожа на ШИМ, но немного доработанный и синхронизированный с источником переменного напряжения.

Расчёт таблицы мощности

Теперь можно перейти непосредственно к расчёту.

Изначально задача заключается в том чтобы разбить синусоиду на нужное нам количество кусочков, каждый из которых будет иметь одинаковую площадь. На этом моменте, обычно проступает холодный пот, так-как площадь под графиком это и есть геометрическое определение интеграла. Соответственно нам нужно будет взять интеграл от функции при этом определить такие пределы интегрирования, которые будут давать одинаковый результат. Затем (как будто расчёта интегралов мало!) полученные пределы нужно будет перевести во время задержки (время в течении которого будет сохранятся высокий уровень). После чего полученное время перевести в понятное для контроллера число — количество тиков таймера. Звучит страшно, а по факту сейчас разберёмся:

Во первых сама функция — как было написано выше мощность это произведение тока на напряжение, для переменного тока (без сдвига фаз), это утверждение также верно, но, так-как и ток и напряжение меняются со временем P=IU превращается в P=I*sin(t) * U*sin(t). Так как амплитуда синусоиды нас сильно не волнует, уравнение вырождается до P=sin^2(t).

Неопределённый интеграл от квадрата синуса

Теперь нужно подобрать пределы для определенных интегралов. Выберем, насколько частей мы хотим разбить нашу синусоиду: я выбрал сто, чтобы можно было регулировать мощность с шагом в 1%.

Итак мы нашли чему будет равен неопределённый интеграл и даже выбрали шаг. Теперь нужно подобрать пределы интегрирования. Смысл их подбора заключается в том, чтобы значение определенного интеграла было постоянным при их смене. Напомню, что неопределенный интеграл это формула, а определённый вполне конкретное число. Определённый интеграл считается по формуле:

То есть мы берем неопределённый интеграл, подставляем в него верхнее число, затем нижнее, и вычитаем второе из первого.

Наш неопределённый интеграл является смешанной тригонометрической функцией, а значит не имеет общего аналитического решения. Чаще всего такие функции решаются либо числовыми, либо графическими методами. Графический метода заключается в том что мы строим графики для правой и левой части уравнения их пересечение будет решением уравнения. На рисунке показано решение уравнения для 0.2

Наряду с графическим методом можно использовать численный, то есть подбор решения. Будем подставлять в неопределённый интеграл числа до тех пор пока не найдём решение). Можно использовать лист и бумажку чтобы попрактиковаться в математике, можно онлайн калькулятор, я же буду использовать Python и библиотеки numpy:

Отлично мы получили массив чисел (пределов интегрирования!), валидность этих чисел можно проверить подставив их в интеграл. В результате должна получится площадь равная выбранному шагу! Теперь, если подставить полученные числа на график мощности, должна получится следующая картина:

Если все сошлось, то можно двигаться дальше и задать получившимся числам размерность времени, потому что сейчас они в радианах. Чтобы это сделать нужно выяснить угловую скорость, для частоты сети, то есть количество радиан в секунду.

Тогда узнаем сколько сколько длится одна радиана

Теперь, значения задержек в радианах, превратим во время, умножив каждое значение на период радианы (T). Проверим ход своей мысли: действительно-ли получится время задержки, если умножить задержку, на период? Задержка имеет размерность радиан, период — секунд за радиану, мы хотим их перемножить. Тогда рад * ( сек / рад ) = сек. Мы получили время, а значит ход мыслей должен быть верным.

Для расчётов я опять предпочту python:

На этом моменте мы получили универсальную таблицу задержек, теперь необходимо конвертировать её специально под микроконтроллер.

Расчёт таймера МК и перевод таблицы

Время необходимо перевести в понятную для МК величину — количество переполнений таймера. Но сначала необходимо определится с частотой таймера: чем выше частота, тем точнее он будет отмерять время, но с другой стороны, тем меньше времени будет оставаться на выполнение остальной программы. Здесь необходимо найти золотую середину.

Для определения минимально допустимой частоты таймера, надо найти числа в массиве с минимальной разностью между ними. Разность тем меньше, чем ближе в максимуму синусоиды мы двигаемся. Тогда возьмем задержку при которой синусоида достигает единицы и число перед ним, после чего найдем их разность:

5 мс — 4.9363 мс = 0.0636 мс

Получившееся число является максимально допустимым периодом между прерываниями таймера, тогда через него найдём минимально допустимую частоту

1 / 0.0636 = 15 КГц

Значит для заданной точности в 1% будет достаточно таймера с частотой 15КГц. Частота МК составляет 16 МГц, значит между прерываниями будет 1000 тактов процессора, этого достаточно для выполнения остальной части программы, так что можно смело настраивать таймер на заданную частоту.

Для настройки таймера на определенную частоту, не кратную тактирующей используется режим таймера CTC — Clear Timer on Compare. В этом режиме таймер досчитывает до заданного числа и сбрасывается, после чего операция повторяется. Число при котором будет происходить совпадение считается по формуле

Число = Тактовая частота МК / предделитель таймера / выбранная частота

Частота выбрана, теперь нужно перевести таблицу в тики таймера. Делать я это буду опять на Python

В общем-то на этом весь расчёт окончен, остается только отзеркалить получившийся массив для второй половины полуволны и загрузить в МК. Далее по прерыванию от синхроимпульса, нужно подать низкий уровень, на ножку управления симистором, запустить таймер и считать его переполнения (совпадения, тк. у нас режим CTC). Как только количество переполнений достигнет нужного числа из таблички, подаем высокий уровень на управляющую ножку. На этом линейный регулятор мощности переменного напряжения готов!

Заключение

Надеюсь статья была понятна и её было интересно читать. В дополнение хотелось бы сказать, сигнал перехода через ноль не приходит идеально вовремя, поэтому может потребоваться дополнительная коррекция, чтобы это исправить.

Код расчетов на python

Также, если кому-то будет интересно, могу поделится исходником готового регулятора для ардуино.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: