Почему ноль не бьет током?

Почему ноль бьет током

Поражение электрическим током происходит при одновременном прикосновении к двум элементам, имеющим разный потенциал, например, к фазе и заземлённому полу.

Нулевой проводник должен подключаться к контуру заземления в водном щитке или на подстанции, поэтому, теоретически, к нему можно безопасно дотрагиваться. Но это правило не всегда работает и люди, мало знакомые с электротехникой, спрашивают, почему ноль бьет током.

Какие провода бьют током

В исправной электропроводке не все провода являются одинаково опасными. Прикосновение к некоторым из них не является болезненным, а касание к другим может привести к электроторавме.

Почему фаза бьет током, а ноль нет – нормальный режим

Обычно при ремонте бытовой электропроводки электромонтёры не используют такие средства защиты, как диэлектрические коврики, боты или галоши, а стоят на полу в обычной обуви.

При этом деревянный, а тем более бетонный пол не отделён какими-либо изоляционными материалами от заземлённых конструкций здания. Поэтому пол и обычная обувь считаются подключёнными к контуру заземления.

Суммарное сопротивление обуви и пола слишком велико для работы электроприборов и отклонения стрелки вольтметра, но для того, чтобы почувствовать удар электричества, достаточен ток в 5-10 мА. В случае прикосновения к фазе через тело человека, пол и обувь протекающий через пострадавшего ток может быть таким или даже намного больше.

Информация! Цифровой вольтметр и неоновая лампа в индикаторе при касании к фазе и полу может показать наличие напряжения.

Для поражения электричеством ток должен протекать через тело человека, следовательно, необходима разность потенциалов.

Причиной того, почему фаза бьет током, а ноль нет, является наличие потенциала в фазном проводе по отношению к заземлению, в исправных линиях нейтраль подключена к контуру заземления и напряжение между нолём и полом отсутствует.

Ударит ли током, если взяться за ноль

Современные сети электроснабжения выполнены по схеме TN — с глухозаземлённой нейтралью. Это значит, что вторичные обмотки питающего трансформатора соединены «звездой», средняя точка которой заземлена и подключена к нейтрали.

В нормальных условиях работы потенциал на нулевой клемме равен потенциалу заземлённых конструкций, за исключением падения напряжения в нейтральном проводнике при протеканию по нему уравнительного тока, поэтому прикосновение к нейтрали должно быть безопасным, однако случаются ситуации, при которых нулевой провод бьется током.

Нулевой провод бьется током и горит индикатор

Такая ситуация возникает при различных неисправностях электропроводки или подходящих линий. При этом на нулевой провод (или тот, который электромонтёр считает таковым) попадает фазное напряжение.

Самыми распространёнными причиной того, почему на нулевом проводе появляется напряжение, являются:

  • неправильное подключение электропроводки во вводном щитке (перепутаны фаза и ноль);
  • обрыв нейтрали;
  • нарушение изоляции.

Увидеть наличие напряжения на нейтральной клемме без индикатора или тестера невозможно, поэтому проверять, ударит ли током, если взяться за ноль голыми руками может быть опасным для жизни.

Причины появления напряжения на ноле

У явления, почему ноль бьет током, могут быть разные причины, от которых зависят действия по устранению неисправности.

Обрыв нуля

Самой распространённой причиной наличия напряжения на нулевой клемме является обрыв нейтрали. При этом через включённые в сеть электроприборы нейтральный проводник оказывается подключённым к фазному проводу. Существует два варианта этой неисправности:

  • Обрыв или отгорание ноля в квартире . В этом случае необходимо отключить вводной автомат, найти обрыв и устранить его.
  • Перегорание нулевой клеммы в подъезде или до ввода в частный дом. В многоквартирном доме неисправность устраняется аналогичным способом, но перед отключением вводного автомата необходимо оповестить всех соседей. При повреждении линии, питающей частный дом, нужно обратиться в электрокомпанию для отключения линии и ремонта.

На нулевой клемме может появиться напряжение так же в случае обрыва нейтрали в трёхфазной сети. При этом его величина может колебаться в диапазоне 0-220В.

Важно! Для появления напряжения в нейтрали достаточно, чтобы в розетку был включён блок питания электронной техники или зарядное устройство мобильного телефона.

Замыкание фазы на нуль

При повреждениях изоляции питающего кабеля возможно замыкание между собой нулевого и фазного проводников.

Это режим короткого замыкания и при этом должен отключиться автоматический выключатель, однако при большой длине проводов и, соответственно, высоком сопротивлении токопроводящих жил, сила не превышает величину уставки магнитного расцепителя автомата, особенно, если он был выбран неправильно.

В этом случае провода будут сильно нагреваться, электросчётчик начнёт учитывать электроэнергию, потраченную в замкнувших проводах, а в нулевом проводе появится фазное напряжение.

Перекос фаз

При неравномерном распределении нагрузки по фазам в нейтральном проводнике начинает протекать уравнительный ток.

В случае его значительной протяжённости и малого сечения, как бывает в старых линиях электропередач, падение напряжения в этом проводе и разности потенциалов между нулевой клеммой в розетке и заземлёнными элементами в доме и контуром заземления на подстанции может достигать 30 и более Вольт .

Информация! Это явление усиливается в «часы пик» потребления электроэнергии.

Перепутаны провода

Кроме неисправностей в сети напряжение на нейтрали может быт из-за ошибки монтажа электропроводки. Иногда это явление возникает при замене электросчётчика или переносе его на другое место.

Согласно ПУЭ п.6.6.28 через выключатель должен проходить фазный провод, а к светильнику подводиться ноль. В некоторых домах это правили нарушено, при этом в отключенном положении выключателя «нулевой» провод люстры будет под напряжением.

Вывод

Самой распространённой причиной того, почему ноль бьет током, является обрыв нейтрали, в этом случае на нулевой клемме появляется фазное напряжение. В некоторых случаях напряжение присутствует в фазном проводнике, который электромонтёры ошибочно принимают за нейтраль. В любом случае, проверять, бьет ли ноль током голыми руками может быть опасным для жизни.

Ноль бьет током. Потенциал на PEN проводнике

почему ноль бьет током - откуда напряжение на нуле

Ноль бьет током — это значит, что PEN проводник, имеющий общую точку с нейтралью трансформатора и землей в определенных ситуациях может иметь потенциал, отличный от нуля.

Самая распространенная причина, из-за которой ноль бьет током — это обрыв (отгорание) нейтрали трансформатора. В этом случае на уже не связанном с нейтралью и землей PEN проводнике в зависимости от неравномерной нагрузки появляется фазное напряжение.

Также, отличный от нуля потенциал на нейтральном проводе имеется практически всегда при нормальном режиме работы. В пятипроводной системе электроснабжения напряжение между землей и нейтралью отсутствует только в точке соединения этих проводов. По мере удаления от этого места за счет сопротивления проводов разность потенциалов постепенно появляется и увеличивается. В данном обзоре будет подробно рассмотрено именно данная ситуация, когда ноль бьет током в штатном режиме работы системы электроснабжения.

Видео обзор — ноль бьет током

Ошибки при анализе нулевого потенциала PEN проводника

Поражение электрическим током возникает при соприкосновении с электрической цепью, в которой присутствуют источники напряжения и/или источники тока, способные вызвать протекание тока по попавшей под напряжение части тела. Обычно чувствительным для человека является пропускание тока силой более 1 мА.

Многие утверждают, что нейтральный проводник при нормальном режиме работы не бьет током. А в качестве объяснения используют следующие доводы:

  • Например, ток течет по пути наименьшего сопротивления.
  • Или якобы нейтраль соединена с землей с нулевым потенциалом и мы стоим на земле. Но все это поверхностно и неверно.

На поверхности земли электрический потенциал равен 0 вольт. Но нужно понимать, что данный нулевой потенциал — это условность, своего рода точка отсчета, о которую спотыкаются многие электрики, пытаясь объяснить процессы протекания электрического тока. Учитывая, что в сеть почти всегда включена нагрузка, а распределить ее по фазам равномерно нереально, между нулевым (PEN) проводником и землей всегда есть разность потенциалов, создаваемая сопротивлением проводника и переходных контактов. Соответственно дотронувшись до нулевого проводника и стоя на земле, вы замкнете цепь, и через вас пройдет ток.

Как распространяется ток в электрической цепи

Начнем разбирать данный вопрос с анализа утверждения, что ток течет по пути наименьшего сопротивления. Это не верно, так как в замкнутой цепи он (а точнее — свободные электроны) распределяется везде, только его сила обратно пропорциональна сопротивлению (если речь идет о смешанном соединении). Другое дело, когда на определенном участке нет вообще сопротивления, тогда весь ток пойдет через него. Это можно показать на схеме, но в реальности на воздушных линиях с большой протяженностью такое невозможно. Для наглядности рассмотрим подключение нагрузки к источнику однофазного тока:

почему ноль бьет током - откуда напряжение на нуле

К источнику питания подключена нагрузка (условно чайник) создающий сопротивление 30 Ом. Цепь замкнулась, и в ней образовался ток 7,3 Ампер. Прикоснувшись к нулевому проводу и стоя на земле, мы создали дополнительную цепь через тело, землю и заземлитель к источнику питания. На данном этапе уместно вспомнить землю с ее нулевым потенциалом. В данном случае она выступает просто как проводник, соединенный с нулевым выводом источника питания. Поэтому можно перестроить схему, заменив землю обычным проводником:

почему ноль бьет током - откуда напряжение на нуле

Как в первой, так и во второй схеме через участок человек — заземление — источник питания не проходит ток. Не удивительно, ведь на пути два резистора с сопротивлением 4 и 1000 Ом. Так почему же неверна трактовка движения по пути наименьшего сопротивления. Весь секрет кроется в проводах, которые имеют свое сопротивление. Электрическое сопротивление жилы самонесущего изолированного провода (СИП) сечением 25 мм² равно 1,380 Ом/км. К примеру, возьмем длину 250 метров. Тогда сопротивление провода в конце линии будет приблизительно 0,345 Ом. Добавим это сопротивление в нашу схему:

почему ноль бьет током - откуда напряжение на нуле

Теперь ток 2,5 мА пошел через человека. Произошло пропорциональное перераспределение тока в цепи. И земля здесь никак не спасает, а наоборот усугубляет. Ведь если бы не был заземлен вывод источника однофазного тока, то никакой разности потенциалов с землей и не было бы.

Для того чтобы понять, почему в цепи человек-земля (проводник)-заземлитель-источник питания появился ток и рассчитать его величину, нужно воспользоваться правилами последовательного, параллельного и смешанного соединения резисторов. Мы этого не будем делать, так как программа Electronics Workbench все посчитала за нас. Лучше простыми словами пройдемся по схеме и разберемся с потенциалами:

почему ноль бьет током - откуда напряжение на нуле

Оранжевый участок от источника питания до нагрузки имеет потенциал 217,5 Вольт. Это значение равно напряжению на входе в резистор с сопротивлением 30 Ом. Участок цепи, отмеченный желтым имеет потенциал 2,5 Вольта, что равно падению напряжения за счет резистора 30 Ом. Как и упоминалось выше, без сопротивления провода 0,345 Ом никакого потенциала на нулевом проводе бы не было. Данный резистор создал в цепи сопротивление, которое позволило распределиться току по двум участкам с силами обратно пропорциональными сопротивлениям этих участков:

  • Участок между человеком и заземлителем источника питания — это зона растекания (локальная земля).
  • Участок схемы, помеченный голубым цветом, имеет нулевой потенциал.

Мы рассмотрели подключение нагрузки к источнику однофазного тока с заземленным выводом. Как видно, при включенной нагрузке за счет сопротивления проводов всегда будет разность потенциалов между нулем и землей. И эта разность будет тем больше, чем больше сопротивление проводов и мощность включенной нагрузки. Так, увеличив мощность нагрузки в три раза, сила тока, проходящая через человека, возросла с 2,5 до 7,4 мА. При таком значении фиксируются судороги и болевые ощущения в руках.

Ноль бьет током в сетях трехфазного тока

Теперь перейдем к рассмотрению разности потенциалов между нейтральным проводом и землей в сетях трехфазного тока. Здесь уже имеются свои особенности. Так, если нагрузки по всем фазам будут одинаковы и не будет смещения нейтрали, то на нейтральном проводе ток будет равен нулю. То есть при соединении в звезду фаз симметричного приемника нейтральный провод не оказывает влияния на работу цепи и может быть исключен.

Читайте также  Что такое кулачковый переключатель и для чего он нужен?

Отсутствие сопротивления в проводах и равномерное потребление в многоквартирном доме или на линии с одно-дух этажной застройкой — это что-то из области фантастики, поэтому нейтральный проводник необходим и его основная функция – это минимизация напряжение смещения нейтрали и искажений фазных напряжений приемников. Подробно на данных процессах останавливаться не будем, и рассмотрим их отдельной темой. А пока же перейдем к току в нейтральном проводе при несимметричном потреблении.

Как и в случае с источником однофазного тока, при добавлении в схему сопротивления проводников помимо смещения нейтрали открывается путь для протекания тока через землю при прикосновении человека к рабочему нулевому или защитному проводнику.

Кстати, во всех системах TN с зануленным электрооборудованием при нормальном режиме работы на проводящих корпусах есть потенциал. А для того, чтобы не было разности потенциалов и вас не било током при замыкании цепи через трубы и иные проводящие коммуникации выполняется система уравнивания потенциалов.

почему ноль бьет током - откуда напряжение на нуле

Вернемся к теме и для наглядности рассмотрим схему:

Как видно, с учетом неравномерной нагрузки (на схеме это резисторы 10, 30 и 50 Ом) и сопротивления проводов взятых условно 0,3 Ом потенциал на дальнем от распределительного трансформатора участке нейтрального провода 4,5 Вольта. Соответственно через человека с сопротивлением 1000 Ом, стоящего на земле и касающегося нейтрального провода, потечет ток с силой 4,5 мА.

Если мы увеличим сопротивление проводов в два раза, то и проходящий через человека ток также возрастет почти в два раза (до 8,3 мА).

Мы знаем, что система TN с глухозаземленной нейтралью должна иметь повторные заземления PEN проводника с общим сопротивлением заземлителей не больше 10 Ом. С добавлением этого повторного заземления большая часть тока уйдет через него, а ток, проходящий через человека снизится с 8,3 до 3,2 мА.

Стоит отметить, что везде мы рассматривали сопротивление человека равное 1000 Ом. Но ведь нужно учитывать также сопротивление обуви, пола, грунта. И действительно, если вы будете стоять к примеру на сухом деревянном полу в обуви с хорошим сопротивлением, то вы скорее всего не почувствуете ничего, прикоснувшись к нейтральному проводу. И здесь условный нулевой потенциал земли никакой роли не играет. Вы всего лишь изолируетесь от проводимости земли. А если еще и выполнена система уравнивания потенциалов, то даже стоя босиком на влажном полу или дотронувшись второй рукой до трубы или батареи, разности потенциалов с нейтралью не будет. И если мы изменим сопротивление человека с 1000 до 5000 Ом, то проходящий через тело ток снизится с 3,2 до 0,6 мА.

Как видно, утверждение, что нейтральный проводник не бьется током, в корне не верное. Разность потенциалов между ним и землей есть всегда. Зависит она от нагрузки, неравномерной нагрузки в сетях трехфазного тока, протяженности воздушной линии и сопротивления проводов. Поэтому, несмотря на то, что в большинстве случаев вы хорошо изолированы от земли либо имеется система уравнивания потенциалов, и вы можете не ощутить влияния малых токов при контакте с нейтральным проводом, никогда не прикасайтесь, не убедившись в отсутствии большого потенциала на нем. Чем больше сопротивление нейтрального провода вплоть до отгорания, тем больше разность его потенциала с потенциалом земли и тем больший ток по закону Ома потечет в этой цепи.

Ударит ли током если взяться за один провод розетки

Иногда и на нулевом контакте в розетке может возникнуть напряжение. Что с этим делать? Решаем проблему «бьющегося» нуля.

Почему «ноль» бьется током?

Появление фазы на нуле — довольно частое явление. Ничего хорошего в этом нет: такого быть не должно. В чем может быть проблема, что проверить в своей квартире или щитке? Как правило, тут ничего сложного.

полоска антистатик работает или нет статическое электричество на машине накопление заряда на автомобиле стальная проволока в антистатической полоске расстояние и напряжение пробоя подзарядка от акб искры при закрытии машины перекос фаз авто бьется током что делать нулевой провод бьется током китайская вебасто для отопления гаража без газа, дров и электричества

OFF: Ударит ли током в воздухе

Ознакомившись с данной статьей, Вы теперь точно сможете объяснить ребенку, почему птиц на проводах не бьет током. Наши пернатые друзья, никакие, не супергерои. Все дело в обычном физическом процессе и электричество для них также опасно, как и для людей.

Причины, из-за которых птицы садятся на провода

Птицы могут садиться на провода под высоким напряжением и подвергаться опасности в различных ситуациях. Во-первых, стоит понимать, что птицы в воздухе чувствуют себя намного спокойней и безопасней, так как нет наземных хищников рядом.

Именно по этой причине в большинстве случаев для отдыха пернатые выбирают именно линии электропередач, которые находятся в достаточной отдаленности от земной поверхности и они имеются практически везде. Некоторые птицы на опорах линий передач делают свои гнезда, поэтому пребывание на проводах вполне объяснимо.

Похожие материалы на сайте:

Бьет током от всего

Да именно такое можно услышать, бьет током от всего. Но бывает и такое, что некоторые говорят: вода бьет током, или кран бьет током, и даже бьет в ванной током.

А совсем недавно позвонил один мой давний знакомый и сообщил, что у соседей якобы бьет током газовая труба.

Такие проблемы каждый год, но только зимой, бывают и у меня, бьет током от всего.

Все то, что говорят люди: вода бьет током, и кран бьет током, и бьет в ванной током.

Всё это есть и у меня в квартире, и причина этому –статическое электричество. Данное явление конечно же не имеет ни чего общего к хищению электроэнергии. Давайте разберемся. Я не собираюсь Вам рассказывать как воруют электроэнергию используя для этого водопроводные трубы и трубы отопления в многоквартирных домах. Замечу только то, что для этих целей давно начали использовать пластиковые трубы, а пластик (как вы понимаете) электрический ток не проводит.

И всё же, к примеру в моей квартире все трубы из металла и вода бьет током, и кран бьет током, и бьет в ванной током. Почему же бьет током от всего? Берем однополюсный цифровой индикатор (самый простой, может даже китайский) и меряет потенциал на трубе или кране. В общем проверяем там, где бьет током. И оказывается, что в этих местах, где нас бьет током, потенциал нулевой! Вы скажете, что индикатор не работает, нет не угадали.

Проверяем работоспособность индикатора в розетке 220 В. Там где в розетке подведена фаза индикатор показывает 220 В, а на другом контакте, где подведен нулевой провод –показывает 12 В, хотя в идеале должно быть ноль! Почему на нулевом контакте показывает 12 Вольт мы сегодня разбирать не будем, это тема отдельной статьи.

Давайте лучше вернемся к нашим “баранам”. Так вот, если бы соседи воровали электроэнергию, используя для этих целей металлические трубы или металлические части здания, то именно на этих частях мы могли бы (в какой то момент) замерить тем же индикатором какой то потенциал, причем гораздо больший чем 12 Вольт.

Но этого как я считаю нет, поэтому бьет током от всего только из за статического электричества. Если в вашем случае все таки есть какой то потенциал (на трубах, кранах и проч.), то поздравляю, ваши соседи воруют электроэнергию,

Почему ноль не бьет током

Да именно такое можно услышать, бьет током от всего. Но бывает и такое, что некоторые говорят: вода бьет током, или кран бьет током, и даже бьет в ванной током.

А совсем недавно позвонил один мой давний знакомый и сообщил, что у соседей якобы бьет током газовая труба.

Такие проблемы каждый год, но только зимой, бывают и у меня, бьет током от всего.

Все то, что говорят люди: вода бьет током, и кран бьет током, и бьет в ванной током.

Всё это есть и у меня в квартире, и причина этому –статическое электричество. Данное явление конечно же не имеет ни чего общего к хищению электроэнергии. Давайте разберемся. Я не собираюсь Вам рассказывать как воруют электроэнергию используя для этого водопроводные трубы и трубы отопления в многоквартирных домах. Замечу только то, что для этих целей давно начали использовать
пластиковые трубы, а пластик (как вы понимаете) электрический ток не проводит.

И всё же, к примеру в моей квартире все трубы из металла и вода бьет током, и кран бьет током, и бьет в ванной током. Почему же бьет током от всего? Берем однополюсный цифровой индикатор (самый простой, может даже китайский) и меряет потенциал на трубе или кране. В общем проверяем там, где бьет током. И оказывается, что в этих местах, где нас бьет током, потенциал нулевой! Вы скажете, что индикатор не работает, нет не угадали.

Проверяем работоспособность индикатора в розетке 220 В. Там где в розетке подведена фаза индикатор показывает 220 В, а на другом контакте, где подведен нулевой провод –показывает 12 В, хотя в идеале должно быть ноль! Почему на нулевом контакте показывает 12 Вольт мы сегодня разбирать не будем, это тема отдельной статьи.

Давайте лучше вернемся к нашим “баранам”. Так вот, если бы соседи воровали электроэнергию, используя для этих целей металлические трубы или металлические части здания, то именно на этих частях мы могли бы (в какой то момент) замерить тем же индикатором какой то потенциал, причем гораздо больший чем 12 Вольт.

Но этого как я считаю нет, поэтому бьет током от всего только из за статического электричества. Если в вашем случае все таки есть какой то потенциал (на трубах, кранах и проч.), то поздравляю, ваши соседи воруют электроэнергию, но это не значит, что у вас, нет не у вас, а у энергоснабжающей организации.

Однако, если быть честным до конца, выше изложенные проблемы могут возникать и по другим причинам, не зависящим от вас и соседей. Бывает, что бьет током и от стен, причины этого мы рассмотрим в другой статье. Что касается понятия “Статическое электричество” можете почитать на сайте ”Википедия” как с этим бороться? Будем думать, а пока спите спокойно…, соседи не воруют! Они тоже спят. Успехов и всех вам благ.

Электропроводка. Почему "ноль" бьёт током? Как исправить?

Да Ноль бьет током совершенно верно. Через фазу -ноль течет ток и если мы возьмемся за ноль и за землю то через нас может потечь ток . Плохой контакт в цепи питания ноля с нулевой шиной.

Бьет током

Получается что ноль становится не нолем за счет изменения цепи питания. Образно плохой контакт это резистор . Т.е. мы нулевой провод образно подключили через резистор к нулевой шине. И когда мы держимся за нулевой провод то мы уже держимся не за нулевой провод . Этот провод подключен в сеть цепи питания.

Электричество может быть только в замкнутой цепи. Другими словами ток, должен откуда то входить и кудато выходить. "Ноль" сам по себе не может бить током. Скорее всего такой эффект может иметь место при обстоятельствах когда "фаза" поступает из за неисправности оборудования к примеру на корпус бытового или другого прибора. Дотронувшись до "нуля" и корпуса вы замыкаете цепь через своё тело, и ощущаете электрический удар от протекания тока. Поэтому рекомендуется заземлять все элктрические приборы, во избежании поражения электрическим током.

Еще вопросы по вашей теме:

Словарь строителя :: Вопросы по ремонту :: Калькуляторы :: Спецтехника :: Разное

Читайте также  Как правильно подключить трехклавишный выключатель Lezard?

2006 — 2017 © пользовательское соглашение :: связь с администрацией сайта max@remotn.ru

Вопрос не однозначен.. Мой Ангел-Хранитель… я устала… Дай руку, прошу, и на основе опыта крылом обними… Держи меня крепче, что, в сущности, не упала, и, наверное, если споткнулась, ты меня подними… Теоретически ничего. .. Это хорошая пища для размышлений…

ЧТо будет если взяться за фазу, а если за ноль. Не вопрос, а пережитки общества… Для достижения волшебства необходимы три слагаемых: мечта, вера в себя и в вещи трудолюбие.

Почему людей бьет током?

.. Прошу прощения, если я не прав.

Ответов не найдено… Вам похоже не повезло в жизни… Верные слова: за, будет, взяться… за фазу дернет хорошо, а за ноль нифига…. поэтому фазоуказатель надо иметь с собой. .. Вроде все верно.

Очень избитая тема.. Жизнь – как собственно говоря коробка шоколадных конфет. Никогда не знаешь, что судя по опыту внутри. В случае, при котором только за фазу — почувствуешь удар током. Несмертельно, но неприятно.
В случае, при котором только за ноль — ничего не будет
А если держаться за ноль и ухватить фазу, то кирдык.

Странный вопрос.. Если бы предложили другие варианты, то человеческая мысль со всеми предрассудками помогает усовершенствать положительных влияний на творчество и досуг. Ситуация может складываться иначе, но получение хороших ответов побуждает нас использовать накопленный опыт понимания сути вопроса. Где-то была статья о том, что информация полученная из ответов затмевает наследственные навыки понимания сути вопроса. Нету разницы в ваших мнениях, но применение психологических маневров преобразует похожие закономерности хотя бы частичного улучшения состояния. .. Извиняюсь, если не прав.

Эмм.. Это самое….. Эксплуатируя сочетание звуков «Взяться» не забывайте о самом необходимом. Ноль значит? Ёпнет током имеет возможность как от напруги так и от земли !
От напруги — тут понятно и ежу, чем выше напруга — тем выше заряд бодрости .
От земли: либо разность потенциалов между PE (проще говоря земля) и N (нейтраль, рабочий нуль), при условии, если они необъеденены на установку/здание в PEN …Обычно непревышает десятков вольт, что несмертельно, но имеет возможность быть неприятно в некоторыйх условиях). А вот если ноль «сбежит» (пропадёт контакт, провод на вводе отгорит) — то имеет возможность шандарахнуть повеселее за счёт напруги, которая ищет куды б деться с вкл. приборов и устройств в сеть, а это всё равно что раздразнить собаку и дать ся укусить !

Перестраховка от заряда бодрости одна -диэлектрическое основание: либо сухой тубурет или им подобный, либо диэлектрические снаряжения перчатки, боты …Но основное: НЕ ББРАТЬСЯ ОДНОВРЕМЕННО ЗА ФАЗУ И НОЛЬ! А иначе отнесут куды подальше … .. И тут есть еще над чем подумать…

Будет? Сегодня сильный ветер, подскажите, мне купить черный или белый? Тайны человеческой жизни велики, а по типу любовь – самая недоступная из этих тайн. Давай скорее, от дебилов надо как то страну спасать…. .. Лучше еще спросите у кого-то.

Взяться? И что значит Ноль? Эмм.. Это самое….. на земле и изолированный ноль пизданет

За однозначно. Неплохо сказано… Приложи к шарам и фазу и ноль, не забудь колготки на голову одеть, да в ванну залезть с водой и ты трамвай .. Не сердитесь, если ответ Вас не устроил)) Какое нежное забвенье , Передо мной стихов листы . Как ненародное смятенье , Как гений вялой долготы …

Я разгадывал познания смешной и какбы радостной жизни, восторгался, как по типа люди, жадные счастья, немедленно скрываются от него, встретившись с ним… Каждый раз, переходя трамвайные или железнодорожные пути, Вы наступаете на рельсу, то имеется но НОЛЬ в данной, а по способности и других, Сети электропитания. И ЧТО ??

опасно ли браться рукой за провода под напряжением в сухом помещении?

Может быть, вопрос покажется абсурдным, но он таков: опасно ли браться голой рукой за электрические провода под напряжением, находясь в помещении ?
Мои соображения: электрическая сеть, подведенная в квартиру, скорее всего состоит из 2-х проводов, один из которых — нуль (возможно, заземленный) , другой — фаза относительно этого нуля. Соотвественно, для того, чтобы человека ударило током, ему необходимо замкнуть ОБА этих провода. А что будет, если браться за необесточенные провода по очереди? Можно, конечно, сказать, что человек сам по себе заземлен, стоя на полу — но как же он заземлен, если стоит, например, на паркете (сухие доски) в тапках и т. п.

Электропроводка. Почему «ноль» бьёт током? Как исправить?

? Значит, человек — НЕЗАЗЕМЛЕН. Почему же его может ударить током? Или играет роль емкость его тела и из-за этой емкости его ударит током в качестве «КОНДЕНСАТОРА», а не «ПРОВОДНИКА» ?
Проясните, пожалуйста, кто в теме.

Да, ты правильно рассуждаешь, Если пол из хорошо изолирующего сухого материала, то при прикосновении к одному проводу током не ударит. Емкость тут практически не влияет. Но лучше так не делать, мало ли что, может, в этом месте влажно или там гвоздик под ногу попал.

Почему кулер для воды бьёт током,заземление, ток утечки

Кулер для воды бьёт током.

В одном из материалов я уже кратко рассказал, чем отличаются кулера друг от друга, в этом материале попытаюсь рассказать как правильно и главное безопасно пользоваться прибором.

Как любой бытовой прибор кулер, при подключении к сети должен быть надежно заземлен. Все приборы для этого оборудованы вилкой с заземлением.

Но реалии нашей жизни таковы,что при монтировании проводки в наших квартирах розетки не заземляются.

Для чего заземлять?

В основе любого нагревательного прибора установлен тэн. Он представляет собой трубку, в которой находится нихромовая спираль заполненная изолятором. Так как вода, агрессивная среда, со временем происходит разрушение трубки, и открытая спираль попадает в воду, тогда на корпусе появляется напряжение. Если прибор заземлен, ток который идёт на корпус создаст короткое замыкание и в вашем щитке просто «выбьет пробки».

Прежде чем подключить прибор к сети, убедитесь в наличие заземления.

При его отсутствие, прибор можно заземлить, прикрепив провод от металлической части прибора к батарее отопления.

В этой части приведу несколько примеров, что может случиться, если пренебречь мерами предосторожности.

2014-03-17 18.48.49 На фотографии показаны 2 тэна: один из них вынут из неисправного кулера.

Если не заземлить прибор, в случае его пробоя, от поражения электротоком не спасут обычные тепловые предохранители из щитка.

Форум ceshka.ru

Для этого есть устройств защитного отключения — УЗО

Тепловые предохранители: это защита от грубого короткого замыкания, которое действительно может быть опасным для жизни. Предохранители , отключаются при нагрузки от 5 и до 10А. Но в некоторых случаях из-за разрыва спирали (как на фото) пробой на корпус происходит через воду.

В таком случае на корпусе появляется напряжение в 220В, но при этом, сила тока часто не достигает и десятых долей ампера то-есть ток утечки. В правильно смонтированной системе электропроводки, появление тока утечки — приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).(Википедия)

Почему ноль не бьет током

Что такое фаза и ноль

Понимание понятий фазы и ноль — даже человеку, который закончил физический факультет, трудновато. Но для человека более далекого в данной теме, который хочет немного разобраться, можно объяснить следующим образом.

В розетках квартиры или дома присутствует переменный ток. Он подается по одному из 2 проводов, который называется фаза. Второй провод — это нуль (ноль).
Определить фазу из двух проводов можно специальной отверткой, лампочка которой будет светиться при прикосновении к проводу.

В фазном проводе + и — меняются местами с частотой 50 герц или 50 раз в секунду.

Нулевой провод — это заземление. Он служит для отвода тока при коротком замыкании и берется от трансформаторной подстанции.

Если дотронуться до фазы рукой, то может хорошенько потрусить. К нолю можно прикасаться и ничего не будет.

И вот теперь совет, который может уберечь человека от смертельного воздействия тока:
1) когда имеете дело с электрическими приборами, всегда оставляйте одну руку свободно висящей в воздухе и ни к чему не дотрагивающейся. Если случайно Вы дотронетесь второй рукой к неисправному прибору или фазе, ток не пройдет по кругу через Ваше сердце.

2) по возможности оденьте резиновые тапочки, чтобы ток не прошел от вашей руки, дотронувшейся к объекту под напряжением, через тело и ноги в землю.

Пример: Я доставал посуду из посудомойки и одной рукой придерживал крышку (из метала), а второй (не задумавшись) прикоснулся к крану (из метала). Посудомойка была всего-навсего подключена к розетке. В результате, меня малость передернуло.

Почему бьёт током стиральная машина или кухонная техника

Электросети большинства объектов жилой недвижимости редко могут похвастать тем, что устроены в полном соответствии с ПУЭ и нормативами электромонтажа. Из-за этого удар током от корпуса стиральной машины или другой кухонной техники — явление вполне закономерное, но в то же время достаточно легко устранимое.

Почему бьёт током стиральная машина

Причины появления опасного потенциала на корпусе

Стиральная и посудомоечная машины, электрический водонагреватель, микроволновая печь и даже обычная вытяжка — все эти приборы могут быть потенциальным источником опасности, связанной с появлением электрического потенциала на корпусе. Как правило, последствия удара током от бытовой техники ограничиваются неприятными ощущениями, однако риск получения серьёзной электрической травмы всё же есть, и потому подобные явления нужно всячески исключать.

Существует четыре основных источника электрического потенциала для бытовой техники:

  1. Пробой изоляции собственной схемы электропитания. Такое характерно для старой бытовой техники, большинство из которой не проектировалось с расчётом на электробезопасность.
  2. Электрический контакт техники с токопроводящими коммуникациями: металлическими трубами, вентиляционными каналами, строительной арматурой (оставим за кадром причины возникновения потенциала в самих коммуникациях, просто примем их как должное и будем бороться с последствиями самостоятельно).

Напряжение на водопроводных трубах

Вне зависимости от источника накопленного заряда, устранение неисправностей, связанных с опасностью поражения электрическим током — одна из основных целей проектирования систем электрификации. Если же соответствующие защитные меры не были предусмотрены в процессе монтажа электросети, обязанность в обеспечении безопасности ложится целиком на плечи пользователей.

Основные защитные меры

Оградить себя от удара током можно двумя способами. Один из них заключается в обесточивании техники при прохождении электричества через тело человека, другой — в построении обходного пути, по которому электричество будет стекать в землю. Первый тип защитных мер подразумевает установку устройств дифференциальной защиты. Они сравнивают количественное значение тока, протекающего по обоим проводам петли фаза-нуль, и отключают питание, если эти значения не эквивалентны.

Устройство и принцип работы УЗОУстройство и принцип работы УЗО

Способ этот достаточно эффективный в плане безопасности, но не всегда удобный. Если напряжение на корпусе прибора обусловлено пробоем изоляции, защитное устройство попросту не позволит подать питание. Ну а поскольку контроль со стороны устройства ведётся только в рамках квартирной сети, от появления потенциала со стороны коммуникаций и статического электричества дифференциальная защита не спасает.

Схема подключения УЗОСхема подключения УЗО: 1 — вводной автомат; 2 — счётчик; 3 — УЗО типа S; 4 — автоматы; 5 — нулевая шина; 6 — УЗО к потребителю; 7 — шина заземления; 8 — трёхжильный провод

Второй способ обеспечения безопасного пользования заключается в построении системы заземления, с которой связаны все токопровдящие части приборов, на которых не должно быть электрического потенциала. Суть работы этой системы крайне проста: человек при касании замыкает собой корпус прибора и землю, то есть служит проводником. Если есть другой проводник, сопротивление которого относительно земли значительно ниже, электрический ток будет стекать уже по нему. При этом сам факт прохождения тока через организм человека не исключается, просто этот ток принимает крайне ничтожную величину и никак не ощущается физически. Разумеется, заземление устраняет влияние и статического электричества, и сторонних источников, хотя в последнем случае всё же рекомендуется обеспечивать диэлектрические соединения деталей.

Заземление котла отопления

Переход на трёхпроводную электросеть

Включение в электрическую сеть системы заземления требует наличия на большинстве участков третьего проводника, называемого защитным нулевым. В отличие от рабочего нуля, провод заземления не участвует непосредственно в работе электросети, он лишь служит для выравнивания опасного потенциала между корпусом оборудования и землёй. При этом токи утечки являются частью общей нагрузки, действующей на основную сеть.

Возможность работы с использованием системы заземления предусмотрена конструкцией большинства бытовых приборов, имеющих открытые металлические части, мощность свыше 1 кВт, а также тех, у которых в процессе работы подразумевается риск контакта электрооборудования с водой. Отличить эти приборы просто — их штепсельная вилка имеет третий контакт помимо двух основных штифтов. Этот контакт напрямую связан с корпусом прибора, соответственно, ответный контакт розетки должен подключаться напрямую к системе заземления.

Вилка и розетка с заземлением

Системы электропитания с защитным нулевым проводником используют кабели, состоящие из трёх жил. Силовые (фаза и нуль) выбираются в соответствии с прогнозируемой нагрузкой. Третья жила может иметь меньшее сечение, его расчёт ведётся, исходя из длины проводника и допустимой величины сопротивления между системой заземления и, собственно, Землёй. Не обязательно, чтобы жила защитного проводника пролегала внутри кабеля. Достаточно часто её прокладывают отдельно, для чего вполне пригодны способы наружной прокладки: в канале плинтуса, открыто по основаниям, в полости отделочных конструкций, либо с замуровкой в слой штукатурки.

Заземление электрощита

В качестве защитного нулевого проводника запрещено использовать инженерные коммуникации из металла, такие как трубы отопления или водопроводной системы. Провод заземления обязательно должен быть медным, причём во внутренней распределительной сети допускается сечение от 1,5 мм 2 , а для связи систем электроснабжения и заземления — не менее 6 мм 2 . В электросети предприятий допускается заменять медные проводники стальными, однако их сечение должно быть не ниже 80 мм 2 , при этом ограничивается максимальная протяжённость в зависимости от действующего класса напряжения.

Медный трёхжильный провод с заземлением

Устройство контура заземления

Конечной точкой любой рукотворной системы заземления служит контур основных заземлителей. Он связывает систему защитных проводников с ближайшим водоносным горизонтом, в котором влага насыщена ионами и, по сути, представляет собой отличный электролит.

Чтобы обеспечить малое электрическое сопротивление между верховодкой и защитным проводником, требуется достаточная площадь соприкосновения и малое сопротивление проводников. Основные заземлители чаще всего представлены прокатными изделиями из стали марки 3 или металлическими частями подземных коммуникаций. В последнем случае допустимость использования естественных заземлителей в качестве таковых определяется ПУЭ.

Контур заземления частного дома

Система заземления может монтироваться забивным способом или устраиваться с сопутствующим проведением земляных работ. В первом случае используют металлопрокат с рёбрами жёсткости: угловую сталь, швеллер, тавр. Подобные изделия могут быть забиты вертикально вниз без деформации, к тому же у них хорошо развита наружная поверхность. При закапывании заземления может использоваться стальной лист, полоса и вообще любые металлические предметы, достаточно массивные для того, чтобы просуществовать в слое грунта несколько десятков лет.

Ввод заземления в дом

Монтаж системы заземления может быть произведён самостоятельно, однако расчёт числа, степени погружения и сечения основных электродов должен производиться специалистами. Методика расчёта опирается как на тип и удельное сопротивление грунта, так и на расположение основного контура и условия его работы. Но можно пойти и более простым путём: начать с 3–4 электродов, прокалывающих водораздел на 50–70 см, а впоследствии добавлять их, если по результатам измерений переходное сопротивление контура недостаточно низкое.

Заземление в квартирных условиях

Остался нерешённым вопрос о том, каким образом можно устроить трёхпроводную сеть на объектах вторичного жилья, где обычно электроснабжение ведётся по двухпроводной схеме. Конечно, лучший вариант — это выполнить реновацию электросети во время очередного ремонта. В ходе этого мероприятия двухжильная проводка в нужных местах меняется на трёхжильную, параллельно ведётся работа над вводом защитного проводника в квартиру. В отношении последнего есть два варианта.

Подключение заземления в щитке

Первый — это когда наличие общедомовой системы заземления предусмотрено строительным проектом. При таком варианте металлические корпуса всех подъездных щитков связаны массивной шиной или стальными элементами строительных конструкций. В подвале дома эта система контактирует с одним или несколькими контурами заземления. Достаточно подключить дополнительную жилу к корпусу щитка в подъезде, а затем соединить обратный её конец с разветвлённой сетью защитных нулевых проводников в собственном жилье. Однако о наличии местного заземления должно быть достоверно известно, иначе происходит подключение защитного рабочего проводника к нулю, что как раз служит одной из предпосылок тяжёлого поражения электрическим током.

Контур заземления для квартиры в многоэтажном доме

В некоторых домах общего контура заземления нет, единственным вариантом остаётся монтаж собственной системы защиты от поражения током. Один из лучших способов — устройство контура основных заземлителей забивным способом на придомовой территории напротив одного из окон своей квартиры. Предварительно нужно получить согласование на проведение земельных работ на выбранном участке, чтобы при забивке электродов не повредить подземные коммуникации. Прокладка провода до ввода в квартиру осуществляется по наружной стене здания с прямым креплением, при этом можно использовать как стальные, так и неизолированные медные проводники соответствующего сечения. Общий провод заземления не обязательно тянуть до квартирного щитка, его мощно соединить с системой защитных проводников в любой её точке, используя обычную электромонтажную коробку.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

220 вольт притягивает или отталкивает: мифы про удары током

Буквально вчера в доме случилось короткое замыкание и перегорела розетка. При починке меня слегка ударило током, а жена сказала, что с виду меня словно притянуло к электричеству. Ну я и задался этим вопросом. Поискал ответы в интернете и, как выяснилось, это очень популярное заблуждения, что 220 вольт притягивают или отталкивают. Решил вот собрать топ 3 самых популярных мифов про электричество и разобрать их подробнее.

Миф 1 – электричество притягивает

Миф популярен среди непросветленного населения и даже некоторых специалистов.

Считается, что 220 вольт отталкивает, а 380 притягивает. Это абсолютно неверно, электричество не притягивает.

Весь этот миф обусловлен строением наших мышечных волокон. Они сокращаются под воздействием электронных импульсов, что исходят из нашего мозга.

Однако, когда вы каким-либо образом коснулись оголённых проводов под напряжением, ваши мышцы перестают ваш слушать и подчинятся импульсам мозга, ведь на них воздействует более сильный источник тока.

Таким образом мышцы начинают судорожно и неконтролируемо сокращаться, а с виду кажется, что человека, что коснулся проводов под напряжением, притягивает электричество.

Проверять провод следует только с помощью специальных приборов, делать это голыми руками весьма опасно.

Но если всё же пришло, то вот совет: делайте это тыльной стороной ладони, таким образом вы сможете мгновенно убрать руку от провода.

Если бы вы коснулись провода под напряжением другой стороной ледени, то вряд ли смогли б убрать руку без чужой помощи.

Миф 2 – чем больше напряжение – тем больше шанс, что вас убьёт током

Этот миф распространён не только среди непросветленного населения, но и многих электриков, инженеров и других специалистов.

Считается, что чем больше напряжение, то тем больше шанс умереть от удара током. Это полная ложь.

При определённых условиях и розетка с напряжением в 220 вольт может убить, а электрошокер с напряжением 90 000 вольт вовремя удара почему-то не убивает.

Человека, что получил удар током убивает не напряжение – а сила тока.

Если человек, стоя прямо на земле, коснётся провода фазы, то его обязательно ударит током. Здесь работает принцип заземления – электричество стремиться к земле.

А человек соединил провод, по которому оно идёт, с землёй – электричество использует его тело как проводник.

Если же человек коснётся провода, находясь на изоляторе опережённой высоты, то удара током не будет, ибо электричество не может пройти через изолятор, цепь не замкнётся.

Но если человек соединит две фазы, то его непременно ждёт удар током.

Проходя через тело человека, электричество нагревает и сжигает его ткани. Вмешиваясь в работу периферийной нервной системы, электричество нарушает работу жизненно важных органов человека (сердце, лёгкие и другие), что, как правило, является основной причиной смерти от удара током.

Это нагревание происходит именно из-за силы тока.

Такое же нагревание происходит и в проводке. У каждого прибора, подключённого к цепи, своя сила тока. А сила тока цепи суммируется от всех электроприборов, подключенных к ней.

Из-за того, что приборов слишком много и они создают слишком большую силу тока для цепи, могут возникать проблемы.

Миф 3 – ванна с феном

Благодаря фильмам способ кинуть электрофен в ванную с водой стал крайне любимым для суицида и расправы над мужьями, любовниками.

Но в реальности подобное вряд ли произойдёт.

Во-первых, как мы уже рассмотрели, чтобы произошёл удар током, тело человека должно провести ток по пути меньшего сопротивления к земле или соединить две фазы.

В данном случае не выполнено ни то, ни другое.

Во-вторых, вода сама по себе плохой проводник, если она не дистиллированная или не насыщена ионами солей.

То есть электричество не пройдёт через воду к телу человека. От силы будет короткое замыкание внутри электроприбора.

Ну и в-третьих, в каждом жилом доме есть защитный автомат, что срабатывает сразу же, если в цепи случится короткое замыкание или резко поднимется сила тока.

Таким образом человек, которого хотели таким способом убить, точно не умер бы.

Рекомендую следующее видео, где разобраны некоторые мифы и факты про электричество:

Что в итоге…

Если рассмотреть самые популярные стереотипы про электричество, оказывается, что о нем есть множество мифов. Например, что электричество притягивает или отталкивает. На самом деле, электричество воздействует на мышцы сильнее, чем импульсы мозга, из-за чего они начинают судорожно сокращаться. Со стороны кажется, что человека притягивает электричество.

Следующий миф о том, что чем больше напряжение, то тем больше шанс умереть от удара током. Однако, на самом деле, человеку надо опасаться силы тока, а не его напряжения – при определённых условиях и розетка с током 220 вольт может убить, а вот шокер, напряжение во время удара которого составляет 90 000 вольт, нет.

И последним миф – ванная с феном. Он опровергается по трём причинам – не происходит заземления с участием тела человека, вода сама по себе плохой проводник и в каждом жилом помещении установлен защитный автомат, который срабатывает сразу же, как только в цепи случится короткое замыкание или резко поднимется сила тока. Таким образом жертва не умрёт, если кинуть фен или любой другой электроприбор в воду.

Напишите в комментариях какие ещё популярные мифы про электричество вы знаете и их следует опровергнуть?

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: