ЗАРЯДНОЕ УСТРОЙСТВО С МИКРОКОНТРОЛЛЕРОМ ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ

ЗАРЯДНОЕ УСТРОЙСТВО С МИКРОКОНТРОЛЛЕРОМ ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ

Зарядное устройство такая вещь, которая необходима каждому владельцу автомобиля. Можно купить готовое ЗУ в магазине, можно собрать его самому по многим известным схемам, а можно использовать промежуточный вариант — приобрести конструктор для самостоятельной сборки. В этом случае вам понадобится только силовой трансформатор и корпус. Недавно заказал такое ЗУ и теперь поделюсь информацией о нём с вами, уважаемые посетители сайта "Радиосхемы".

ЗАРЯДНОЕ УСТРОЙСТВО С МИКРОКОНТРОЛЛЕРОМ СПАРК-3

Технические характеристики ЗУ:

Амперметр . до 9,9 Ампер

Заданное напряжение на аккумуляторе, при котором будет отключен заряд ……………………. …. от 5,1 до 30,0 Вольт

Защита от короткого замыкания

Защита от переполюсовки при подключении аккумулятора

Комплект поставки:

ЗАРЯДНОЕ УСТРОЙСТВО С МИКРОКОНТРОЛЛЕРОМ ДЛЯ АВТОМОБИЛЬНОГО - комплект

Назначение прибора

Зарядное устройство SPARK-3 предназначено для заряда аккумуляторов с напряжением 6, 12, 24 вольт током от 0,5 до 9,9 ампер до заданного напряжения или заданное время. В состав прибора входят: Вольтметр, Амперметр, стабилизатор тока, автомат отключения при достижении на аккумуляторе заданного напряжения, таймер. В комплект входит собранная и отлаженная плата, диодный мост, симистор, два диода и рамка для монтажа индикатора в корпус. Управление производится с помощью трех кнопок:

верхняя кнопка — "Верх
средняя кнопка — "Меню
нижняя кнопка — "Вниз

Зарядное - набор чтоб собрать самому

Для включения режим зарядки нажать "Верх” при этом засветится светодиод "зарядка” инициируя включенный режим зарядки. Последующие нажатия на кнопку "Верх” будут переключать индикацию напряжения или тока. Если включен амперметр, на индикаторе показана буква "А” (например "0,0А”). Для отключения режима заряда нажать кнопку "Вниз”, светодиод " зарядка” гаснет, последующие нажатия этой кнопки так же поочередно показывают на индикаторе напряжение или ток. Для изменения параметров заряда служит кнопка "Меню”.

При первом нажатии и удержании будет показан символ вольтметра "— U” после отпускания показано напряжение от 5,1 до 30,0 вольт. Последняя цифра мигает. С помощью кнопок "Верх” и "Вниз” установить требуемое напряжение, при достижении которого будет отключен режим заряда.

При втором нажатии и удержании будет показан символ ампер " A” после отпускания показано задание тока заряда от 0,5А до 9,9А в амперах с помощью кнопок "Верх” и "Вниз” установить требуемый ток заряда.

При третьем нажатии и удержании будет показан символ часов " h” при отпускании показано задание таймера отключения от 1h до 30h (от 1 до 30 часов) с помощью кнопок "Верх” и "Вниз” установить требуемое значение таймера отключения.

При четвертом нажатии на индикаторе будут три черточки "— — —”. при отпускании прибор выйдет из режима Меню, на индикаторе не будет мигать последняя цифра.

Как заряжать аккумулятор

Подсоедините крокодилы, на клеммы аккумулятора нажимая кнопку "Вниз” переключите прибор в индикацию напряжения. Вольтметр покажет напряжение на аккумуляторе. Нажмите кнопку "Верх”. Включится светодиод " зарядка”. Ток будет плавно подниматься до заданного значения. Каждые две минуты ток выключается на 4 секунды и при отключенном токе напряжение сравнивается с заданным максимальным напряжением, если напряжение на аккумуляторе достигнет заданного значения, то зарядка отключится и светодиод " зарядка” погаснет. Если напряжение на аккумуляторе не достигнет максимального значения, то отключение произойдет по истечении задания таймера (от 1 до 30 часов).

— Для ручного отключения зарядки нажать кнопку "Вниз”


Аккумулятор с напряжение меньше 5 вольт заряжаться не будет.


При переполюсовке клемм ток зарядки так же не будет включен.


При выключенном заряде или отсутствии сети 220 вольт прибор не разряжает аккумулятор.

Сборка зарядного устройства

Собираем зарядное устройство с МК согласно принципиальной схемы — клик для увеличения картинки:

Сборка зарядного устройства спарк

Для сборки зарядного устройства SPARK-3 потребуется трансформатор мощностью от 100Вт до 250Вт с напряжением на вторичной обмотке 18 — 22 Вольт, корпус и радиатор (пластина размером 100*150*3 мм). Если необходимо собрать зарядное устройство для аккумуляторов 24 вольта, то трансформатор должен иметь напряжение на вторичной обмотке 30 вольт.

Выпрямитель и симистор закрепить на радиаторе

Выпрямитель и симистор закрепить на радиаторе. Радиатор закрепить в корпусе через изоляторы. Кнопки на плате служат только для проверки устройства при установке в корпус рекомендуеся припаять другие кнопки установленные на передней панели.

ЗАРЯДНОЕ УСТРОЙСТВО С МИКРОКОНТРОЛЛЕРОМ ДЛЯ АВТО

При первом включении не подключая аккумулятор, нажимая кнопку "Вниз” переключить в Вольтметр. Вольтметр должен показывать "00,0" если вольтметр показывает напряжение, значит, пробит симистор, подключать аккумулятор недопустимо. Для замены подойдет любой импортный симистор на ток 12-20 ампер. Не подключать отечественные симисторы — для них требуется большой ток включения. Цена данного набора может колебаться в пределах 12-20уе — уточняйте в интернет магазинах. В дальнейшем устройство будет собрано, подключено к электронному трансформатору и размещено в корпусе. Следите за публикациями!

Форум по обсуждению материала ЗАРЯДНОЕ УСТРОЙСТВО С МИКРОКОНТРОЛЛЕРОМ ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ

Схема устройства цветодинамического сопровождения музыки, выполненного на базе драйвера LED индикатора LM3914.

Обсудим действующие стандарты радиосвязи, узнаем чем они отличаются, и когда использовать какие из них.

Описание нового Блютус протокола беспроводной связи — Bluetooth Mesh.

Автоматическое ЗУ на МК Atmega16

Стал обладателем автоматического зарядного устройства на микроконтроллере Atmega16.
Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A. Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
Достоинства данного ЗУ — его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей. Подробнее можно прочитать тут electronics-lab.ru/blog/123.html и тут radiokot.ru/forum/viewtopic.php?f=25&t=31187

1. Режим зарядки — меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
— первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
— второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
— третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С — ёмкость батареи в Ач.
— четвёртый этап — «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это- четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.

2. Режим тренировки (десульфатации) — меню «Тренировка». Здесь осуществляется тренировочный цикл:
10 секунд — разряд током 0,01С, 5 секунд — заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее — обычный заряд.
3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.
4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С — 0.05С (ток 10-ти или 20-ти часового разряда).
Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.
Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля — П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.
Значения настроек:
1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики на рис.1 и рис.2.
2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию — 16В.
5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.

Выбор и переделка блока питания.
В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это — практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.
Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4). Можно также применить и БП формата AT, только придется изготовить еще маломощный блок дежурного питания (дежурку) на напряжение 12В и ток 150-200мА. Разница между AT и ATX – в схеме начального запуска. АТ запускается самостоятельно, питание микросхемы ШИМ–контроллера берётся с 12-вольтовой обмотки трансформатора. В ATX для начального питания микросхемы служит отдельный источник 5В, называемый «источник дежурного питания» или «дежурка». Более подробно о блоках питания можно прочитать, например, здесь electronics-lab.ru/blog/remont/119.html#comment743, а переделка БП в зарядное устройство неплохо описана вот здесь. www.aleksandrov.ru/fr/download.php?id=3736&sid
Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть. Блок питания АТ запускается сразу, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме — значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.
Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3.

Читайте также  Устройство современной сауны

На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В, -5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом — чуть позже. Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

Схема и принцип работы.
Схема блока управления показана на рис.4.

Она довольно проста, так как все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4, C9, R7, C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера — встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения — на элементах VD1, EP1, R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Самодельное зарядное устройство li-ion аккумуляторов на базе МК ATMega328

Самодельное зарядное устройство li-ion аккумуляторов на базе МК ATMega328Анализируется возможность построения схемы зарядки литий-ионных аккумуляторов на базе МК ATMega328 и популярного программного обеспечения ARDUINO версии 1.8.5.

В интернете, в свободном доступе, размещена статья Рыкованова А., Беляева С. «Зарядные устройства для портативных литий-ионных аккумуляторных батарей», где рассмотрена методология построения зарядных устройств, без рассмотрения принципиальных схем. В данной статье сделана попытка разработки и изготовления одной из множества вероятных схем на основе радиолюбительской технологии «Сделай сам».

За основу взяты два графика, размещённых в плоскости Рис.3, заряда одиночного литий-ионного аккумулятора приводимого в указанной статье. График I – интерпретирует ток заряда аккумулятора, график U – напряжение на аккумуляторе.

Зарядное устройство li-ion аккумуляторов на базе МК ATMega328

Первоначальный заряд малым током (этап 1’) используется для обеспечения безопасности аккумулятора (АК) при заряде. Если внутри АК произошло короткое замыкание (КЗ), то по истечении некоторого времени заряда напряжение на нем не будет возрастать. Этот факт может свидетельствовать о неисправности. Если начать заряд достаточно большим током сразу, то при КЗ может произойти сильный разогрев аккумулятора и его разгерметизация. Необходимо отметить, что данный этап часто исключают из цикла заряда батареи, начиная заряд сразу с этапа1.

На этапе 1 заряд осуществляется номинальным током, который измеряется в долях от номинальной емкости (Сh) АК. Например, емкость АК 1000мАч, ток заряда 0,1Сн, то есть 100 мА обеспечивается 10-и часовым режимом заряда. Чтобы заряд осуществлялся быстрее, например в течение 2 ч, что соответствует 0,5 Сн (500мА). Такой режим заряда называеся ускоренным. Для нормальной работы АК номинальный ток заряда лежит в пределах от 0,1 СН (100мА) до 2,8 Сн,т.е. 280 мА. Т.е. на этапе 1’ и 1 зарядное устройство (ЗУ) работает как стабилизатор тока, при этом напряжение на АК линейно возрастает.

На этапе 2 поддерживается постоянное напряжение близкое к напряжению полного заряда, при этом ток снижается по экспоненте практически до нуля.
Привязываем указанные этапы к Li-ion аккумуляторам с номинальным напряжением в 3,7 В, см.рис.2:

Зарядное устройство li-ion аккумуляторов на базе МК ATMega328

Рис.2. Li-ion аккумуляторы.

Этап 1’ – напряжение на АК <2,5 В ток заряда 50 мА до 3 В

Этап 1 – напряжение на АК 4В > АК > 3 В ток заряда 100 мА

Этап 2 – напряжение на АК 4,2В => АК > 3 В ток в пределах 150-200 мА.

На всех этапах, напряжение подаваемое на АК постоянное, порядка 8В, через ограничивающий 2-х ваттный резистор R21 в 20 Ом. При достижении напряжения на АК 4,2 В, напряжение обнуляется путём подачи нулевого кода в порт D, см.Рис.4.

На Рис.3 представлена структурная схема ЗУ. Цифроаналоговый преобразователь (ЦАП) фиксирует код от микроконтроллера (МК) в виде аналогового напряжения от 0 до 8 вольт с дискретностью 8/255=

30 мВ и через гасящий резистор R подаётся напряжение на АК. Ток контролируется и регулируется через измерение падения напряжения на R (АЦП2-АЦП1)/R. Напряжение на АК контролируется АЦП2.

Самодельное зарядное устройство li-ion аккумуляторов на базе МК ATMega328

Рис.3. Структурная схема ЗУ.

Самодельное зарядное устройство li-ion аккумуляторов на базе МК ATMega328

Рис.4. Принципиальная схема ЗУ.

Для управления ЗУ был выбран ATMega328 в виду относительной лёгкости написания и отладки программы на языке Arduino. ATMega328 имеет встроенный загрузчик, что позволяет комфортно производить отладку на персональном компьютере в среде Windows7 с использованием виртуального COM-порта. Порт D МК полностью задействован на управление 8-и разрядным параллельным ЦАП состоящим из 16-ти SMD-резисторов (R1÷R16) по 22 и 11 кОм соответственно. МК работает на частоте 16 мГц что обеспечивается кварцевым резонатором и соответствующей прошивкой фьюзов МК.

Для контроля и измерения напряжения и тока на АК служат два аналоговых канала А0 и А1. Непрерывно измеряемая информация поступает в МК для обработки и выдаётся на OLED-дисплей, управляемый по протоколу программной шины I2C сигналами SDA и SCK. Вывод информации на OLED производится на основе библиотеки iarduino_OLED_txt.h, см.Приложение1. Для выдачи звуковых сигналов служит мини-динамик управляемый каналом МК PB2. Для формирования звука использовалась функция языка Arduino tone(), см. на сайте arduino «Программирование Ардуино».

Напряжение ЦАП формируется кодом D0÷D7 и не может превышать на выходе цепи R-2R 5-и вольт. ( R1÷R18, операционный усилитель (ОУ) MCP602 вход 3,выход 1, см.рис.4). Для создания эффективного тока для ЗУ на всех этапах требуется напряжение превышающее 5 В. Имеющийся в наличии ОУ MCP602 имеет следующие характеристики:

  • Рабочее напряжение питания от 2,7В до 5,5В
  • Амплитуда выходного сигнала до напряжения питания
  • Допускается входной сигнал с амплитудой ниже нуля
  • Полоса частот до 2,8МГц
  • Низкое энергопотребление Idd=325мкА
  • Рабочий температурный диапазон от -40 до +85гр.С
  • Два операционных усилителя в одном корпусе

Прекрасная микросхема, но на нет сводит всю работу. Нужен усилитель до 10 вольт. Что я теряю, если запитаю её на 10 вольт? Максимум она сгорит, а мне придётся искать однополярное ОУ на 10 вольт. Сказано, сделано. После того, как ЗУ надёжно проработало с данным ОУ целый месяц, стало понятно что рабочее напряжение микросхемы занижено. Повышение питания не сказалось на линейности выдаваемого напряжения на усилитель мощности на Т1 и Т2.

Cхема усилителя на MCP602 представлена 2-мя каскадами. Первый каскад неинвертирующий усилитель, ножки 1,2,3 с коэффициентом усиления равным (R17+R18)/R17=3.(См. В.С.Гутников «Применение операционных усилителей в измерительной технике», стр.29).

Второй каскад, ножки 5,6,7 – прецезионный повторитель с относительно мощным выходом способным работать на повторитель на транзисторах Т1, Т2 не загружая предварительный усилитель.

Силовая часть ЗУ состоящая из Т1, Т2, D1, R21 через разъёмы типа «мама/папа» формирует напряжение на АК. Напряжение на АК в точке А1 контролируется АЦП(А1) МК, канал PC1/ADC1, контакт 24 МК. Для измерения тока служит цепочка из R19 и R20, по 22кОм и 11кОм соответственно. Используя закон Ома для участка цепи:

  1. Измеряется напряжение в точке соединения R19 и R20 АЦП(А0), канал PC0/ADC0, контакт 23 МК.
  2. Вычисляется ток на участке цепи R20 как АЦП(А0)/R20.
  3. Вычисляется напряжение в узле цепи D1 и R21 как (АЦП(А0)/R20)*( R19 + R20).
  4. Вычисляется ток подаваемый в АК как ((АЦП(А0)/R20)*( R19 + R20))/R21.

Почему так вычисляется ток на АК? Это связано с тем что 5-и вольтовое АЦП МК не сможет измерять напряжение свыше 5-и вольт. Поэтому стоит делитель R19 и R20 на канале А0. АЦП меряет часть напряжения и программа путём расчётов вычисляет требуемые значения тока и напряжения.
Узел питания для МК и OLED выполнен на регулируемом стабилитроне ТL431, транзисторе КТ815Б и потенциометре R24 на 10 кОм. На Рис.5 ЗУ в стадиях разработки и испытаний.

Зарядное устройство li-ion аккумуляторов на базе МК ATMega328

Рис.5. Настройка ЗУ.

Левая часть рис.5 – отладка и испытания макета с использованием отладочного комплекса Arduino Uno с выводом результатов испытаний на дисплей ПК, справа — наработка на надёжность готового ЗУ с выводом результатов испытаний на дисплей OLED, рис.6.

Читайте также  ДЕСУЛЬФАТИРУЮЩЕЕ ЗАРЯДНОЕ УСТРОЙСТВО

Самодельное зарядное устройство li-ion аккумуляторов на базе МК ATMega328

Рис.6. Внешний вид платы ЗУ.

Укрупнённое фото ЗУ в момент зарядки АК. Зарядка идёт через разъём OUT помеченного белой изолентой. OLED-дисплей фиксирует момент зарядки 2-го этапа, т.е. когда напряжение на АК равно 4,153В, что меньше 4,2В и больше 4В. При этом порт D выдаёт максимальный код равный 255 и ток зарядки равный 194 мА. При этом резистор зелёного цвета в 20 Ом гасит избыточное напряжение для АК. При окончании зарядки, т.е. когда напряжение на АК превысит 4,2 В, программа формирует малый ток (поддержка 4.2 В), при этом динамик выдаёт октаву октаву звукового ряда до,ре,ми, фа,соля,си и т.д. до отсоединения АК от ЗУ.

Самодельное зарядное устройство li-ion аккумуляторов на базе МК ATMega328

Рис.7. Обратная сторона готовой платы ЗУ.

17-06-20.ino – скетч (программа) под Arduino
17-06-20.ino.standard.hex – прошивка скетча для программирования флэш-памяти МК любым программатором для МК фирмы Atmel.
17-06-20.ino.with_bootloader.standard.hex – загрузчик, при использовании Arduino Uno (Nano) встроен в память МК и через COM-порт загружает скетч пользователя

Инструменты при разработке ЗУ:

  1. Сервисное ПО для разработки и отладки, Arduino версия 1.8.5.
  2. sPlain 7.0, графический редактор – вычерчивание принципиальной схемы.
  3. Sprint Layout 6.0 — вычерчивание печатной платы (ПП) и экспорт ПП в предварительные текстовые форматы фрезеровки и сверловки для фрезерного станка.
  4. CNC_Converter_v1.72.exe — конвертер экспорта ПП в текстовые форматы для фрезерного станка.
  5. Указанные программы находятся в свободном доступе в Интернете.
  6. Фрезерный станок СНС-3 Луганского завода малого машиностроения – изготовление ПП.

Выводы:

  1. ЗУ уверенно распознаёт диапазон в котором оно будет работать, с выдачей и контролем тока и напряжения для данного диапазона.
  2. Если диапазон этапа 1’, ЗУ с задержкой в 1 сек каждого кода порта D, наращивает ток до 50 мА и заряжает АКБ данным током до 3В, т.е. в первую секунду формируется код 01, во вторую секунду 02 и т.д., контролируя ток до 50мА, после чего наращивание тока прекращается. По мере зарядки АК напряжение на нём растёт и ток падает ниже 50мА, ЗУ распознаёт уменьшение и наращивает ток до 50мА и т.д. до 3-х вольт.
  3. Переходя в диапазон этапа 1, ЗУ наращивает ток до 100 мА и заряжает АК данным током до 4В.
  4. Переходя в диапазон этапа 2, ЗУ наращивает ток до 150÷200 мА и заряжает АК данным током до 4,2 В. При достижении 4,2 В, ЗУ малым током поддерживает АК с выдачей звукового сигнала.
  5. Для любопытного читателя отсылаем к статье, в свободном доступе, по применению используемого ЦАП — «Параллельный Цифро Аналоговый Преобразователь по схеме R-2R»

Автор: Владимир Шишмаков, Кузнецовск (Вараш), июнь 2020 г.

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Зарядное устройство с автоматическим отключением от сети

Ещё одна схема зарядного устройства очень похожа на предыдущую, но отличается способом отключения при окончании зарядки. Пуск зарядного устройства производится нажатием кнопки «пуск» на лицевой панели, при этом на схему подаётся питающее напряжение, реле К1 срабатывает и обеспечивает «самоподхват». Подробнее…

Зарядное на L200

Зарядка для телефона от солнцаСолнечная батарея для зарядки телефона

Конечно, хорошо было бы если телефон заряжался или хотя бы частично подзаряжался от источника солнечной энергии. Производители телефонов почему-то не производят самозаряжающиеся телефоны. Но всё же есть такой телефон (Samsung E1107), который в идеальных условиях может полностью зарядится от солнца за 55 часов. Жалко не везде есть так называемые идеальные условия.

DIY-зарядник для аккумуляторов ноутбуков на базе контроллера MP26123/MP26124

Это не первый мой проект по разработке зарядного устройства для батарей ноутбуков. Отмечу, что в первом проекте я использовал Max1873. Но для контроля заряда пришлось использовать микроконтроллер ATtiny. Все бы ничего, но здесь требовалось написать специфический код, что усложнило проект.

Второй проект работает на базе MP26123 или MP26124 от Monolithic Power Systems. Эти чипы дают возможность заряжать разряженный аккумулятор, прекращать зарядку при достижении 100% уровня заряда, разряжать уже заряженную батарею и контролировать ее температуру. Достоинством контроллеров является еще и то, что основной FET-свитч расположен внутри, что снижает сложность компоновки. Пример собранной платы — в самом начале статьи. Ну а под катом обсудим подробности проекта.

Подробности проекта

Для разработки платы я изучил спецификацию контроллеров MP26123 и MP26124. Обозначения элементов, которые нужны для платы, показаны на схеме ниже. Есть и исходный файл, если вам захочется изменить дизайн платы.

Важный момент: контроллеры не понижают ток заряда, не ограничивают входной ток. Но на плате есть плавкий предохранитель на 5А. Вместо традиционного для многих плат диода Шоттки я использую PFET для снижения нагрева. PFET вместо диода также используется, чтобы не использовать падение напряжения на диоде в 0,4В. Это важно, поскольку энергии от близкой к полному разряду батареи из 3 ячеек едва хватает для подсветки экрана ноутбука. Контроллеры MP26123/MP26124 запитывают нагрузку понижающего стабилизатора LM2596 либо от батареи, либо от входных 19В. Падений напряжения при подключении или отключении блока питания нет. Контакт включения MP26123/MP26124 находится на самом краю платы, так что при необходимости Pi может отключить зарядку.

На простой SR latch всегда подается питание для того, чтобы активировать нагрузку понижающего регулятора. Это требуется в случае включения кнопочного выключателя питания. SR latch запитывается от 3,3В линейного регулятора или от входного 19В питания. Ток, потребляемый батареей при отключенной нагрузке понижающего регулятора, составляет 315 мкА. Внутренний саморазряд батареи в 2% плюс потери в 3% из-за защитной схемы приводят к полной разрядке аккумулятора за 324 дня. Если вы не планируете использовать ноутбук все это время, лучше просто вынуть аккумулятор. В этом случае саморазряд в 2% приведет к полной разрядке батареи примерно через два года (при условии, конечно, что батарея при извлечении была заряжена на 100%).

Если напряжение аккумуляторной батареи падает ниже 3В для одной ячейки, контроллеры MP26123/MP26124 выполняют предварительную зарядку в течение 30 минут, снижая ток до 10% от тока заряда. Благодаря резистору R12 я снизил полный ток заряда до 1А. Согласно спецификации, контроллеры могут выдержать и 2А, но мне не хотелось сильно нагружать систему. Как только напряжение аккумулятора достигает максимального уровня, зарядное устройство перейдет в ждущий режим (в 10% от номинального тока), а потом отключится.

Максимальное время зарядки установлено на 4,5 часа с конденсатором С6 емкостью в 0,15 мкФ. Значение времени можно менять путем изменения емкости конденсатора — для этого есть таблица данных с формулой. При необходимости термистор батареи 10K NTC может быть подключен к контроллеру питания для отключения тока заряда при повышении или, наоборот, понижении температуры до заданного уровня. По дефолту отключение будет выполнено при 40° C (верхняя граница) или 11° C (нижняя). Если термистор не подключаете, то установите резистор на 10К для эмуляции комнатной температуры.

К сожалению, у контроллеров MP26123/MP26124 есть ряд недостатков. Так, их можно использовать только для заряда ячеек литиевых батарей с напряжением каждой ячейки не более 4,2В. Старые аккумуляторы, где значение было 4,1В, и новые с элементами 4,35 В заряжать при помощи этого устройства нельзя. Но если установить контроллер Max1873, то проблем нет.

Что касается пайки контроллеров, то я использовал самодельную печь, но, конечно, для сборки платы лучше использовать паяльную станцию с нагревом воздуха.

Особенности платы

Ширина дорожек на плате рассчитана на ток не менее 3A. Было проверено несколько вариантов, в итоге было решено остановиться на минимальной ширине дорожек в 5 мм. В первом варианте платы использовалось 3,3В от MP26123 для SR latch, что активировалось лишь при подключении к розетке. Обновленная конструкция включает отдельный линейный регулятор на 3,3В, который поддерживает SR latch в рабочем состоянии хоть при подключенном питании, хоть без него. Размеры платы 62 мм * 54 мм.

Что касается цены, то три платы, изготовленные OSHPark.com, мне обошлись в $26 с доставкой силами USPS. Можно использовать и JLCPCB.com, для этого воспользуйтесь файлом архива MPS_Charge_Controller_2021-02-23.zip. Пять плат обойдется заказчику в $10 со стандартной доставкой.

На графике ниже показаны результаты тестирования MP26123, заряжающего аккумуляторную батарею 3S2P от Lenovo T61.

Также я разместил инструкцию на Instructables, где показано, как подключить плату зарядного устройства батареи к Pi, Teensy и видеокарте. В мануале рассказывается, как использовать Raspberry Pi с питанием от батареи в модифицированном ноутбуке. Там же приложен код на Си, который управляет связью с батареей по шине SMBus, отображая указатели уровня заряда и выключая ноутбук при разряде.

Библиотека устройств на микроконтроллерах

Автоматическое ЗУ на МК ATmega16A

В этой статье я расскажу, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей. К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения. ОписаниеУстройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной […]

Інвертор 24в(12В)-220вх50Гц

07.02.2012 0 комментариев

На польових транзисторах На біполярних транзисторах прошивка — скачать

Зарядное устройство от солнечных батарей

Зарядное устройство от солнечных батарей

31.01.2012 0 комментариев

Данное зарядное устройство использует 12 В солнечную батарею и регулируемый стабилизатор напряжения LM317. В солнечной батареи содержатся солнечные панели, каждая из которых выдает напряжение 1.2 Вольта. В итоге, с солнечных панелей получается 12 В постоянного тока для зарядки аккумуляторов. Немного о работе зарядного устройства. Ток от солнечных элементов, через диод D1 поступает на стабилизатор напряжения […]

Регулятор мощности с фазовым управлением симистором на микроконтроллере PIC16F84A

Регулятор мощности с фазовым управлением симистором на микроконтроллере PIC16F84A

18.12.2011 5 комментариев

Регулятор предназначен для плавного управления мощностью активнойнагрузки, питающейся от сети переменного тока 220 вольт частотой 50 Гц.Мощность нагрузки зависит от типа применяемого симистора. В основуметода управления положен принцип фазового регулирования моментавключения симистора, включенного последовательно с нагрузкой. Фото регулятора представлены на риснках :В момент включения мощность на нагрузке нарастает плавно, что удобно,если регулятор будет использоваться для […]

Питание 12-вольтового вентилятора от электросети

Питание 12-вольтового вентилятора от электросети

10.12.2011 0 комментариев

Во многих устройствах для охлаждения деталей, на которых рассеивается значительная мощность радиолюбители используют 12-вольтовые миниатюрные вентиляторы, предназначенные для работы в персональных компьютерах. Такие вентиляторы относительно доступны, так как их можно купить практически в любом магазине, торгующем платами для компьютеров, либо получить с разборки неисправных источников питания персональные компьютеров. В любом случае, возможность применения вентилятора ограничивается […]

Авто-адаптер для ноутбука

Авто-адаптер для ноутбука

09.12.2011 2 комментария

Для питания ноутбуков от бортовой сети автомобиля выпускаются преобразователи напряжения, но они имеют достаточно высокую стоимость, от $50 и выше. Стоимость описываемого преобразователя на много ниже. Тем более, что большую часть деталей можно взять из старого блока питания от компьютера. Сборка займет пару вечеров. В качестве формирователя ШИМ преобразователя используется интегральный таймер […]

Читайте также  УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОГО ПОЛИВА РАСТЕНИЙ

Качели для зарядки свинцово-кислотных аккумуляторов.

Качели для зарядки свинцово-кислотных аккумуляторов.

07.12.2011 0 комментариев

Начитавшись в Интернете всякого про SLA (VRLA) аккумуляторы, решил испробовать алгоритм заряда стабильным током. Выглядит он так. Сначала идёт заряд стабильным током, величиной 0,1C. (где C — номинальная ёмкость аккумулятора в ампер-часах) Как только напряжение на аккумуляторе повысится до 14,5 вольт, зарядный ток выключается. Напряжение на аккумуляторе начинает самопроизвольно уменьшаться. Как только оно уменьшится до […]

Зарядное устройство машинных аккумуляторов » ЭЛЕКТРОН-3М»

Зарядное устройство машинных аккумуляторов » ЭЛЕКТРОН-3М»

05.12.2011 8 комментариев

внешний вид устройства принципиальная схема Попросил меня друг отремонтировать ему зарядное , думал делов то найти сгореную деталь заменить , ну оказалось устройство сильно постарелоот платы начали отваливатся дорожки и ноги некоторых деталей все напрашивалось на новый текстолит который в разов 10ть лутше по качеству еже ли гетинакс. Розвел печатную плату отталкиваясь от старых впаял […]

Импульсный блок питания усилителя на IR2151-IR2153

Импульсный блок питания усилителя на IR2151-IR2153

06.11.2011 3 комментария

На входе стоит PTC термистор (Positive Temperature Coefficient) – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов. Диодный мост на входе для выпрямления сетевого напряжения на ток 10А. Использована диодная сборка типа «вертикалка», но можно использовать […]

Лабораторный блок питания с микроконтроллером.

05.10.2011 2 комментария

Блок питания имеет два независимых канала со стабилизацией тока и напряжения, и третий независимый канал с фиксированными напряжениями Устройство имеет — два источника с регулируемым выходом 0-30вольт и регулируемым ограничением по току 0,02 — 3 ампера. — источник с фиксированными напряжениями 5 и 12 вольт с ограничением по току 1,5 ампера. — регулируемые источники имеют […]

Зарядное устройство для автомобильных аккумуляторов на Atmega 16.

Как то проходил я мимо аккумуляторной комнаты на работе. Проходя возле двери, почувствовал запах тухлых яиц. Так было несколько раз. Я спросил у мужиков, что за ядерная вонь? Они сказали, что сероводород из батарей так пованивает. Заглянул я туда и увидел что стоят пару батарей на зарядке и кипят как суп в кастрюле. Оказывается некоторые пользователи автомобилей оставляют свои батареи на ночь на зарядку и идут баиньки. А там пусть все огнем горит.

С одной стороны откуда пользователь знает, что там за зарядное и как оно работает? К тому же эти зарядники общественные, ну то есть колхозные. А колхозное, часто качественным не бывает. Разобрал я один зарядник и увидел, что там стоит трансформатор и диодный мост. Это все что там было. Конечно при такой схеме батарея будет кипеть. Ну вот и решили я грохнуть эти зарядные и сделать что то получше.

Начал рыть интернет, скачал пару книг. Посмотрел теорию. Схем зарядных устройств валом. Но большинство из них 70х годов. Сделаны как правило на транзисторах. В более продвинутых еще тиристоры есть. Все это очень скучно, серо и уныло. Есть так же схемы на микроконтроллерах, это уже интересней. Можно данные на LCD дисплей вывести, разные органы управления замутить. Но мне захотелось изобрести свой велосипед. Творчество как никак. Вот я и склепал с десяток зарядников по такой схеме. 8 ампер выжимают. Этого хватит за глаза. Схема в нормальном качестве лежит в архиве в конце статьи.

Это было правда года 4 назад. Этими зарядниками до сих пор пользуются.

Одна из целей, собрать из того что было под рукой. Корпуса использовал из под старых зарядников.
Трансформатор использовал от списанных, сгоревших бесперебойников для компьютеров. Так называемых УПСов. Вот он.

Вот его внутренности:

Силовой трансформатор УПСа оказался идеальным по всем параметрам. Вторичная обмотка толстая с «мизинец». Сам трансформатор мощный, сделан качественно, с креплениями. Выходное напряжение 16 — 17 V AC. То что надо. В упсе есть еще второй трансформатор, маленький такой. Я его использовал для питания самой управляющей платы. Причем в нем есть две вторичные обмотки соединенные последовательно. Двухполярное питание для операционников считай уже готово. Прелесть. Диодный силовой мост, тоже был использован из старых зарядников. Охлаждение для тиристора взял из старых материнок для компьютеров. Вентилятор для охлаждения тоже снял со сгоревших китайских импульсных блоков питания, для тех же материнок. Остальную мелочевку, аккуратно выпаял из плат со старых мониторов. Купить только пришлось LCD дисплеи для индикации, энкодеры, ну и парочку мелочевок. Так что большинство деталей наколупал в загашниках. Atmega16 тоже лежали в загашнике. Ее и использовал.

Задачи перед зарядником были поставлены такие:
1. Автоматическое поддержание тока зарядки, изначально выставленным пользователем.
2. Простота в управлении. Один энкодер. Повернул и нажал. Это все.
3. При неправильно подключенной батарее (ошибка полярности), заряд невозможен.
4. Защита от к.з. Если при заряде, вдруг упал ломик на клеммы батареи, зарядник должен вырубится. А батарея, ну уж как получится.
5. Если батарея дохлая, и не может достичь порога 14.4 вольт при зарядке, то программный таймер должен вырубить заряд с соответствующим выводом сообщения не дисплей. Иначе батарея просто выкипит.
6. Зарядник невозможно запустить, пока не будет подключена батарея к клеммам зарядника с соблюдением полярности.
7. Зарядник не должен выходить из строя если к нему подключили батарею не соблюдая полярность.
8. Должен иметься режим «хранение батареи». Предположим ты не планируешь пользоваться батареей в течении пол года. Можно просто подключить батарею к заряднику, поставить на полку и забыть. Зарядник время от времени проверяет напряжение на батарее. И ели оно упало ниже чем например 12.5 вольт, автоматически врубается зарядка малым током 0.5 А.

Пин ADC0 — измеряет ток заряда батареи.
Пин ADC1 — фиксирует скачек тока при к.з.
Пин ADC2 — измеряет напряжение батареи.
Пин AIN1 — фиксирует отсутствие/присутствие батареи.
Пин PB4 — если что не так пошло, врубает защитное реле, которое отключает силовой трансформатор.
К пинам PD0, PD1, PD3 подключен энкодер.
Пин INT0 — ловит прохождение синусоиды после диодного моста, через нулевую точку. Зная когда эта точка появляется, можно легко вычислить когда надо включить тиристор. А вырубается тиристор сам, в точке указанной ниже на схеме.

Немного о теории заряда автомобильных аккумуляторов:

1. Батарея считается заряженной на 100% когда на ней 12.9 вольт.

2. Если на батарее 10.8 вольт, то она разряжена на 100%. Дальнейшее хранение или эксплуатация приведет с сульфатации пластин. Этот процесс фактически необратим. Если пластины засульфатированы, то такая батарея уже мусор. Существуют конечно такие спец зарядники, которые специальной импульсной формой тока как бы десульфатируют пластины. Но сами понимаете батарея уже будет не та. Так что если на батарее 12 вольт или ниже, то бегом ноги в руки и заряжать.

3. Зарядник в процессе заряда должен довести батарею до 14.4 вольта. Это так называемая точка закипания электролита. Когда эта точка достигнута, заряд еще не закончен. Далее надо плавно убавлять ток заряда. Убавили, подождали, пока опять не будет 14.4 вольта. Потом снова убавили. И так пока ток заряда не достигнет меньше 0.5 ампера. Ну а там уже можно вырубить.

4. Для батареи всегда более эффективна зарядка малым током. Это дольше по времени, но зато батарея целее будет. И при таком заряде она зарядится максимально. Так что гнаться за большими токами заряда не стоит. Большие токи оправданы в том случае, если вам надо срочно ехать, а батарея сдохла. Тогда можно конечно влупить 20А но не на слишком большой срок. Это реанимирует батарею и стартер она провернет. Опять таки, для батареи с большой емкостью этот ток еще ничего, с малой уже чего. Ток заряда выбирается делением емкости батареи на 10. Если у вас емкость 65 А/ч, значит начальный ток заряда можно установить 6.5А.

Вот график заряда батареи моим зарядником для батареи 65 А/ч.

Если посмотреть на оциллограмму работы тиристора, то увидим такую картину.
Красная зона, это и есть та временная часть, когда осуществляется заряд батареи.Получается когда открывается тиристор, батарея подкорачивает вторичную обмотку на себя. И напруга на обмотке падает до напряжения на батарее. Из-за этого трансформатор в красном диапазоне может входить в насыщение. И начинать нехило греться. Поэтому лучше брать транс по мощнее. Если нет такого, тоже можно выкрутиться из ситуации. Тиристор надо открывать попозже. Тогда красная зона заряда будет поменьше. Нагрев уменьшится, но и токи заряда будут меньше. Как раз таки двигая точку открытия тиристора по синусоиде, регулируем ток заряда батареи. Драйвер работы с дисплеем писал с нуля.

Вообще ничего не мешает, перекроить схему по желанию, что нибудь выкинуть или добавить. Ну и прошивку самому написать. Творчество великое дело.

Прошивку накатал на ассемблере в AvrStudio 4.19. Весь проект на асме и схема в нормальном качестве лежит в топике.

Недостатки:
1. Тяжелый. Можно вместо гантелей использовать. Если долбанет по ноге, ногти сразу отлетят. На импульсной схеме полегче был бы.
2. Если покупать детали с нуля, то дорого выйдет. Дешевле купить готовый. С другой стороны когда делаешь сам, то сделаешь то, что тебе самому надо. + творчество и + кайф пусконаладочных работ.
3. Из-за конденсатора(интегрирующая цепочка) на ноге ADC0 есть некоторая инерционность работы зарядника. Но без него никак. Но по сути работе это не мешает.
4.… остальные пункты сами добавите.

Достатки:
1. Творчество.
2. Развитие умственных способностей.
3. Повышения уровня знаний в том как работают те или иные электронные приборы. В частности тиристор, LCD дисплей, аппаратные узлы микроконтроллера и др. Если просто купить готовый, то этого никогда не узнаешь. Ну только если из книг, но это сухая теория. А здесь тебе и практика и польза колхозу.
4. Как выше говорилось, кайф пусконаладочных работ.
5.… остальные пункты сами добавите.

Вот две книженции выкладываю.
Зарядно пусковые устройства.zip — 2005г.
Зарядные устройства.zip — 2005г.
Но судя ниже из комментария clawham ни в коем случае их не скачивайте. Потому что там все схемы тупо кипятильные. Ну и моя схема в статье тоже тупо кипятильная. Только то зарядное которое он спроектировал, является самым правильным, но он с ним не хочет делиться.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: